Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_4_a1, author = {A. I. Aptekarev and Yu. G. Rykov}, title = {Emergence of a {Hierarchy} of {Singularities} in {Zero-Pressure} {Media.} {Two-Dimensional} {Case}}, journal = {Matemati\v{c}eskie zametki}, pages = {486--499}, publisher = {mathdoc}, volume = {112}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a1/} }
TY - JOUR AU - A. I. Aptekarev AU - Yu. G. Rykov TI - Emergence of a Hierarchy of Singularities in Zero-Pressure Media. Two-Dimensional Case JO - Matematičeskie zametki PY - 2022 SP - 486 EP - 499 VL - 112 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a1/ LA - ru ID - MZM_2022_112_4_a1 ER -
A. I. Aptekarev; Yu. G. Rykov. Emergence of a Hierarchy of Singularities in Zero-Pressure Media. Two-Dimensional Case. Matematičeskie zametki, Tome 112 (2022) no. 4, pp. 486-499. http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a1/
[1] A. N. Kraiko, “O poverkhnostyakh razryva v srede, lishennoi sobstvennogo davleniya”, Prikladnaya matematika i mekhanika, 43:3 (1979), 500–510 | MR | Zbl
[2] F. Bouchut, “On zero-pressure gas dynamics”, Advances in Kinetic Theory and Computing, Ser. Adv. Math. Appl. Sci., 22, ed. B. Perthame, World Sci., Singapore, 1994, 171–190 | MR | Zbl
[3] V. I, Yu. G. Rykov, Ya. G. Sinai, “Variatsionnyi printsip Laksa–Oleinik dlya nekotorykh odnomernykh sistem kvazilineinykh uravnenii”, UMN, 50:1 (301) (1995), 193–194 | MR | Zbl
[4] E. Grenier, “Existence globale pour la système des gaz sans pression”, C. R. Acad. Sci. Ser. I. Math., 321:2 (1995), 171–174 | MR | Zbl
[5] W. E, Yu. G. Rykov, Ya. G. Sinai, “Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in ashesion particle dynamics”, Comm. Math. Phys., 177 (1996), 349–380 | DOI | MR | Zbl
[6] F. Huang, Z. Wang, “Well posedness for pressureless flow”, Comm. Math. Phys., 222:1 (2001), 117–146 | DOI | MR | Zbl
[7] J. Li, G. Warnecke, “Generalized characteristics and the uniqueness of entropy solutions to zero-pressure gas dynamics”, Adv. Differential Equations, 8:8 (2003), 961–1004 | MR | Zbl
[8] R. Hynd, “A trajectory map for the pressureless Euler equations”, Trans. Amer. Math. Soc., 373:10 (2020), 6777–6815 | DOI | MR | Zbl
[9] J. Li, T. Zhang, S. L. Yang, The Two-Dimensional Riemann Problem in Gas Dynamics, Longman, London, 1998 | MR | Zbl
[10] J. F. Colombeau, Elementary Introduction to New Generalized Functions, North-Holland Math. Stud., 113, North-Holland, Amsterdam, 1985 | MR | Zbl
[11] Yu. G. Rykov, “Osobennosti tipa udarnykh voln v srede bez davleniya, resheniya v smysle teorii mery i v smysle Kolombo”, Preprinty IPM im. M. V. Keldysha, 1998, 030
[12] Yu. G. Rykov, “On the nonhamiltonian character of shocks in 2-D pressureless gas”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 5 (2002), 55–78 | MR | Zbl
[13] Yu. G. Rykov, “Variatsionnyi printsip dlya dvumernoi sistemy uravnenii gazovoi dinamiki bez davleniya”, UMN, 51:1 (307) (1996), 165–166 | DOI | MR | Zbl
[14] J. Li, H. Yang, “Delta-shock waves as limits of vanishing viscosity for multidimensional zero-pressure gas dynamics”, Quart. Appl. Math., 59 (2001), 315–342 | MR | Zbl
[15] V. M. Shelkovich, “Singulyarnye resheniya sistem zakonov sokhraneniya tipa $\delta$- i $\delta'$-udarnykh voln i protsessy perenosa i kontsentratsii”, UMN, 63:3 (381) (2008), 73–146 | DOI | MR | Zbl
[16] S. Albeverio, O. S. Rozanova, V. M. Shelkovich, Transport and Concentration Processes in the Multidimensional Zero-Pressure Gas Dynamics Model With Energy Conservation Law, 2011, arXiv: 1101.5815
[17] Yu. G. Rykov, “Resheniya s raspadom veschestva v sisteme uravnenii gazovoi dinamiki bez davleniya”, Matem. zametki, 108:3 (2020), 477–480 | DOI | Zbl
[18] N. V. Klyushnev, Yu. G. Rykov, “Non-conventional and conventional solutions for one-dimensional pressureless gas”, Lobachevskii J. Math., 42:11 (2021), 2615–2625 | DOI | MR | Zbl
[19] K. Khanin, A. Sobolevski, “Particle dynamics inside shocks in Hamilton–Jacobi equations”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 368:1916 (2010), 1579–1593 | DOI | MR | Zbl
[20] K. Khanin, A. Sobolevski, “On dynamics of Lagrangian trajectories for Hamilton–Jacobi equations”, Arch. Ration. Mech. Anal., 219:2 (2016), 861–885 | DOI | MR | Zbl
[21] S. N. Gurbatov, A. I. Saichev, S. F. Shandarin, “Krupnomasshtabnaya struktura Vselennoi. Priblizhenie Zeldovicha i model slipaniya”, UFN, 182:3 (2012), 233–261 | DOI
[22] M. Sever, “An existence theorem in the large for zero-pressure gas dynamics”, Differential Integral Equations, 14:9 (2001), 1077–1092 | MR | Zbl
[23] A. Bressan, T. Nguyen, “Non-existence and non-uniqueness for multidimensional sticky particle systems”, Kinet. Relat. Models, 7:2 (2014), 205–218 | DOI | MR | Zbl
[24] S. Bianchini, S. Daneri, On the Sticky Particle Solutions to the Multi-Dimensioanl Pressureless Euler Equations, 2020, arXiv: 2004.06557
[25] A. I. Aptekarev, Yu. G. Rykov, “Variatsionnyi printsip dlya mnogomernykh zakonov sokhraneniya i sredy bez davleniya”, UMN, 74:6 (450) (2019), 159–160 | DOI | MR | Zbl
[26] A. I. Aptekarev, Yu. G. Rykov, “Detalizatsiya mekhanizma obrazovaniya osobennostei v sisteme uravnenii gazovoi dinamiki bez davleniya”, Dokl. RAN, 484:6 (2019), 655–658 | MR | Zbl
[27] Y. Pang, “The Riemann problem for the two-dimensional zero-pressure Euler equations”, J. Math. Anal. Appl., 472:2 (2019), 2034–2074 | DOI | MR | Zbl
[28] A. Chertock, A. Kurganov, Yu. Rykov, “A new sticky particle method for pressureless gas dynamics”, SIAM J. Numer. Anal., 45:6 (2007), 2408–2441 | DOI | MR | Zbl