Emergence of a Hierarchy of Singularities in Zero-Pressure Media. Two-Dimensional Case
Matematičeskie zametki, Tome 112 (2022) no. 4, pp. 486-499.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized solutions of the system of zero-pressure gas dynamics equations in the case of two spatial variables are considered. In contrast to the much-studied case of one spatial variable, the two-dimensional situation, as well as the multidimensional situation in general, is characterized by the fact that strong singularities can arise on manifolds of various dimensions. This property will be referred to as the existence of a hierarchy of strong singularities. We show that the generalization of the Rankine–Hugoniot relations must be extended in the presence of a hierarchy of singularities and give the form of such an extension. We use the Riemann initial data as an example to show how to construct a generalized solution in the case of a hierarchy of singularities.
Keywords: zero-pressure medium, strong singularity, concentration of matter, generalized Rankine–Hugoniot relations, hierarchy of singularities.
@article{MZM_2022_112_4_a1,
     author = {A. I. Aptekarev and Yu. G. Rykov},
     title = {Emergence of a {Hierarchy} of {Singularities} in {Zero-Pressure} {Media.} {Two-Dimensional} {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {486--499},
     publisher = {mathdoc},
     volume = {112},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a1/}
}
TY  - JOUR
AU  - A. I. Aptekarev
AU  - Yu. G. Rykov
TI  - Emergence of a Hierarchy of Singularities in Zero-Pressure Media. Two-Dimensional Case
JO  - Matematičeskie zametki
PY  - 2022
SP  - 486
EP  - 499
VL  - 112
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a1/
LA  - ru
ID  - MZM_2022_112_4_a1
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%A Yu. G. Rykov
%T Emergence of a Hierarchy of Singularities in Zero-Pressure Media. Two-Dimensional Case
%J Matematičeskie zametki
%D 2022
%P 486-499
%V 112
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a1/
%G ru
%F MZM_2022_112_4_a1
A. I. Aptekarev; Yu. G. Rykov. Emergence of a Hierarchy of Singularities in Zero-Pressure Media. Two-Dimensional Case. Matematičeskie zametki, Tome 112 (2022) no. 4, pp. 486-499. http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a1/

[1] A. N. Kraiko, “O poverkhnostyakh razryva v srede, lishennoi sobstvennogo davleniya”, Prikladnaya matematika i mekhanika, 43:3 (1979), 500–510 | MR | Zbl

[2] F. Bouchut, “On zero-pressure gas dynamics”, Advances in Kinetic Theory and Computing, Ser. Adv. Math. Appl. Sci., 22, ed. B. Perthame, World Sci., Singapore, 1994, 171–190 | MR | Zbl

[3] V. I, Yu. G. Rykov, Ya. G. Sinai, “Variatsionnyi printsip Laksa–Oleinik dlya nekotorykh odnomernykh sistem kvazilineinykh uravnenii”, UMN, 50:1 (301) (1995), 193–194 | MR | Zbl

[4] E. Grenier, “Existence globale pour la système des gaz sans pression”, C. R. Acad. Sci. Ser. I. Math., 321:2 (1995), 171–174 | MR | Zbl

[5] W. E, Yu. G. Rykov, Ya. G. Sinai, “Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in ashesion particle dynamics”, Comm. Math. Phys., 177 (1996), 349–380 | DOI | MR | Zbl

[6] F. Huang, Z. Wang, “Well posedness for pressureless flow”, Comm. Math. Phys., 222:1 (2001), 117–146 | DOI | MR | Zbl

[7] J. Li, G. Warnecke, “Generalized characteristics and the uniqueness of entropy solutions to zero-pressure gas dynamics”, Adv. Differential Equations, 8:8 (2003), 961–1004 | MR | Zbl

[8] R. Hynd, “A trajectory map for the pressureless Euler equations”, Trans. Amer. Math. Soc., 373:10 (2020), 6777–6815 | DOI | MR | Zbl

[9] J. Li, T. Zhang, S. L. Yang, The Two-Dimensional Riemann Problem in Gas Dynamics, Longman, London, 1998 | MR | Zbl

[10] J. F. Colombeau, Elementary Introduction to New Generalized Functions, North-Holland Math. Stud., 113, North-Holland, Amsterdam, 1985 | MR | Zbl

[11] Yu. G. Rykov, “Osobennosti tipa udarnykh voln v srede bez davleniya, resheniya v smysle teorii mery i v smysle Kolombo”, Preprinty IPM im. M. V. Keldysha, 1998, 030

[12] Yu. G. Rykov, “On the nonhamiltonian character of shocks in 2-D pressureless gas”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 5 (2002), 55–78 | MR | Zbl

[13] Yu. G. Rykov, “Variatsionnyi printsip dlya dvumernoi sistemy uravnenii gazovoi dinamiki bez davleniya”, UMN, 51:1 (307) (1996), 165–166 | DOI | MR | Zbl

[14] J. Li, H. Yang, “Delta-shock waves as limits of vanishing viscosity for multidimensional zero-pressure gas dynamics”, Quart. Appl. Math., 59 (2001), 315–342 | MR | Zbl

[15] V. M. Shelkovich, “Singulyarnye resheniya sistem zakonov sokhraneniya tipa $\delta$- i $\delta'$-udarnykh voln i protsessy perenosa i kontsentratsii”, UMN, 63:3 (381) (2008), 73–146 | DOI | MR | Zbl

[16] S. Albeverio, O. S. Rozanova, V. M. Shelkovich, Transport and Concentration Processes in the Multidimensional Zero-Pressure Gas Dynamics Model With Energy Conservation Law, 2011, arXiv: 1101.5815

[17] Yu. G. Rykov, “Resheniya s raspadom veschestva v sisteme uravnenii gazovoi dinamiki bez davleniya”, Matem. zametki, 108:3 (2020), 477–480 | DOI | Zbl

[18] N. V. Klyushnev, Yu. G. Rykov, “Non-conventional and conventional solutions for one-dimensional pressureless gas”, Lobachevskii J. Math., 42:11 (2021), 2615–2625 | DOI | MR | Zbl

[19] K. Khanin, A. Sobolevski, “Particle dynamics inside shocks in Hamilton–Jacobi equations”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 368:1916 (2010), 1579–1593 | DOI | MR | Zbl

[20] K. Khanin, A. Sobolevski, “On dynamics of Lagrangian trajectories for Hamilton–Jacobi equations”, Arch. Ration. Mech. Anal., 219:2 (2016), 861–885 | DOI | MR | Zbl

[21] S. N. Gurbatov, A. I. Saichev, S. F. Shandarin, “Krupnomasshtabnaya struktura Vselennoi. Priblizhenie Zeldovicha i model slipaniya”, UFN, 182:3 (2012), 233–261 | DOI

[22] M. Sever, “An existence theorem in the large for zero-pressure gas dynamics”, Differential Integral Equations, 14:9 (2001), 1077–1092 | MR | Zbl

[23] A. Bressan, T. Nguyen, “Non-existence and non-uniqueness for multidimensional sticky particle systems”, Kinet. Relat. Models, 7:2 (2014), 205–218 | DOI | MR | Zbl

[24] S. Bianchini, S. Daneri, On the Sticky Particle Solutions to the Multi-Dimensioanl Pressureless Euler Equations, 2020, arXiv: 2004.06557

[25] A. I. Aptekarev, Yu. G. Rykov, “Variatsionnyi printsip dlya mnogomernykh zakonov sokhraneniya i sredy bez davleniya”, UMN, 74:6 (450) (2019), 159–160 | DOI | MR | Zbl

[26] A. I. Aptekarev, Yu. G. Rykov, “Detalizatsiya mekhanizma obrazovaniya osobennostei v sisteme uravnenii gazovoi dinamiki bez davleniya”, Dokl. RAN, 484:6 (2019), 655–658 | MR | Zbl

[27] Y. Pang, “The Riemann problem for the two-dimensional zero-pressure Euler equations”, J. Math. Anal. Appl., 472:2 (2019), 2034–2074 | DOI | MR | Zbl

[28] A. Chertock, A. Kurganov, Yu. Rykov, “A new sticky particle method for pressureless gas dynamics”, SIAM J. Numer. Anal., 45:6 (2007), 2408–2441 | DOI | MR | Zbl