Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 412-425.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the linear inhomogeneous congruence $$ ax-by\equiv t\,(\operatorname{mod}q) $$ and prove an upper estimate for the number of its solutions. Here $a$, $b$, $t$, and $q$ are given natural numbers, $x$ and $y$ are coprime variables from a given interval such that the number $x/y$ expands in a continued fraction with partial quotients on a finite alphabet $\mathbf{A}\subseteq\mathbb{N}$. For $t=0$, a similar problem has been solved earlier by I. D. Kan and, for $\mathbf{A}=\mathbb{N}$, by N. M. Korobov. In addition, in one of the recent statements of the problem, an additional constraint in the form of a linear inequality was also imposed on the fraction $x/y$.
Keywords: linear inhomogeneous congruence, linear homogeneous congruence, continued fraction, finite alphabet.
@article{MZM_2022_112_3_a9,
     author = {I. D. Kan and V. A. Odnorob},
     title = {Linear {Inhomogeneous} {Congruences} in {Continued} {Fractions} on {Finite} {Alphabets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {412--425},
     publisher = {mathdoc},
     volume = {112},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a9/}
}
TY  - JOUR
AU  - I. D. Kan
AU  - V. A. Odnorob
TI  - Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets
JO  - Matematičeskie zametki
PY  - 2022
SP  - 412
EP  - 425
VL  - 112
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a9/
LA  - ru
ID  - MZM_2022_112_3_a9
ER  - 
%0 Journal Article
%A I. D. Kan
%A V. A. Odnorob
%T Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets
%J Matematičeskie zametki
%D 2022
%P 412-425
%V 112
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a9/
%G ru
%F MZM_2022_112_3_a9
I. D. Kan; V. A. Odnorob. Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 412-425. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a9/

[1] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniya, Fizmatlit, M., 1989 | MR

[2] I. D. Kan, “Lineinye sravneniya v tsepnykh drobyakh iz konechnykh alfavitov”, Matem. zametki, 103:6 (2018), 853–862 | DOI | MR

[3] J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math. (2), 180 (2014), 137–196 | DOI | MR

[4] D. A. Frolenkov, I. D. Kan, A Reinforsment of the Bourgain–Kontorovich's Theorem by Elementary Methods, 2012, arXiv: 1207.4546

[5] D. A. Frolenkov, I. D. Kan, A Reinforsment of the Bourgain–Kontorovich's Theorem, 2012, arXiv: 1207.5168

[6] I. D. Kan, D. A. Frolenkov, “Usilenie teoremy Burgeina–Kontorovicha”, Izv. RAN. Ser. matem., 78:2 (2014), 87–144 | DOI | MR | Zbl

[7] D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II”, Mosc. J. Comb. Number Theory, 4:1 (2014), 78–117 | MR

[8] S. Huang, “An improvment on Zaremba's conjecture”, Geom. Funct. Anal., 25:3 (2015), 860–914 | DOI | MR

[9] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. III”, Izv. RAN. Ser. matem., 79:2 (2015), 77–100 | DOI | MR | Zbl

[10] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. IV”, Izv. RAN. Ser. matem., 80:6 (2016), 103–126 | DOI | MR

[11] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. V”, Analiticheskaya i kombinatornaya teoriya chisel, Tr. MIAN, 296, MAIK «Nauka/Interperiodika», M., 2017, 133–139 | DOI | MR

[12] I. D. Kan, “Verna li gipoteza Zaremby?”, Matem. sb., 210:3 (2019), 75–130 | DOI | MR

[13] I. D. Kan, “Usilenie metoda Burgeina–Kontorovicha: tri novykh teoremy”, Matem. sb., 212:7 (2021), 39–83 | DOI

[14] I. D. Kan, “Usilenie odnoi teoremy Burgeina–Kontorovicha”, Dalnevost. matem. zhurn., 20:2 (2020), 164–190 | DOI

[15] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha o malykh znacheniyakh khausdorfovoi razmernosti”, Funkts. analiz i ego pril., 56:1 (2022), 66–80 | DOI

[16] D. Hensley, “The Hausdorff dimensions of some continued fraction cantor sets”, J. Number Theory, 33:2 (1989), 182–198 | DOI | MR

[17] D. Hensley, “The distribution of badly approximable numbers and continuants with bounded digits”, Theorie des nombres, de Gruyter, Berlin, 1989, 371–385 | MR

[18] D. Hensley, “A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets”, J. Number Theory, 58:1 (1996), 9–45 | DOI | MR

[19] A. Ya. Khinchin, Tsepnye drobi, GIFML, M., 1960 | MR | Zbl

[20] R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics. A Foundation for Computer Science, Addison-Wesley Publ., Reading, MA, 1994 | MR