Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_3_a9, author = {I. D. Kan and V. A. Odnorob}, title = {Linear {Inhomogeneous} {Congruences} in {Continued} {Fractions} on {Finite} {Alphabets}}, journal = {Matemati\v{c}eskie zametki}, pages = {412--425}, publisher = {mathdoc}, volume = {112}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a9/} }
TY - JOUR AU - I. D. Kan AU - V. A. Odnorob TI - Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets JO - Matematičeskie zametki PY - 2022 SP - 412 EP - 425 VL - 112 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a9/ LA - ru ID - MZM_2022_112_3_a9 ER -
I. D. Kan; V. A. Odnorob. Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 412-425. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a9/
[1] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniya, Fizmatlit, M., 1989 | MR
[2] I. D. Kan, “Lineinye sravneniya v tsepnykh drobyakh iz konechnykh alfavitov”, Matem. zametki, 103:6 (2018), 853–862 | DOI | MR
[3] J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math. (2), 180 (2014), 137–196 | DOI | MR
[4] D. A. Frolenkov, I. D. Kan, A Reinforsment of the Bourgain–Kontorovich's Theorem by Elementary Methods, 2012, arXiv: 1207.4546
[5] D. A. Frolenkov, I. D. Kan, A Reinforsment of the Bourgain–Kontorovich's Theorem, 2012, arXiv: 1207.5168
[6] I. D. Kan, D. A. Frolenkov, “Usilenie teoremy Burgeina–Kontorovicha”, Izv. RAN. Ser. matem., 78:2 (2014), 87–144 | DOI | MR | Zbl
[7] D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II”, Mosc. J. Comb. Number Theory, 4:1 (2014), 78–117 | MR
[8] S. Huang, “An improvment on Zaremba's conjecture”, Geom. Funct. Anal., 25:3 (2015), 860–914 | DOI | MR
[9] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. III”, Izv. RAN. Ser. matem., 79:2 (2015), 77–100 | DOI | MR | Zbl
[10] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. IV”, Izv. RAN. Ser. matem., 80:6 (2016), 103–126 | DOI | MR
[11] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. V”, Analiticheskaya i kombinatornaya teoriya chisel, Tr. MIAN, 296, MAIK «Nauka/Interperiodika», M., 2017, 133–139 | DOI | MR
[12] I. D. Kan, “Verna li gipoteza Zaremby?”, Matem. sb., 210:3 (2019), 75–130 | DOI | MR
[13] I. D. Kan, “Usilenie metoda Burgeina–Kontorovicha: tri novykh teoremy”, Matem. sb., 212:7 (2021), 39–83 | DOI
[14] I. D. Kan, “Usilenie odnoi teoremy Burgeina–Kontorovicha”, Dalnevost. matem. zhurn., 20:2 (2020), 164–190 | DOI
[15] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha o malykh znacheniyakh khausdorfovoi razmernosti”, Funkts. analiz i ego pril., 56:1 (2022), 66–80 | DOI
[16] D. Hensley, “The Hausdorff dimensions of some continued fraction cantor sets”, J. Number Theory, 33:2 (1989), 182–198 | DOI | MR
[17] D. Hensley, “The distribution of badly approximable numbers and continuants with bounded digits”, Theorie des nombres, de Gruyter, Berlin, 1989, 371–385 | MR
[18] D. Hensley, “A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets”, J. Number Theory, 58:1 (1996), 9–45 | DOI | MR
[19] A. Ya. Khinchin, Tsepnye drobi, GIFML, M., 1960 | MR | Zbl
[20] R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics. A Foundation for Computer Science, Addison-Wesley Publ., Reading, MA, 1994 | MR