Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 412-425

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the linear inhomogeneous congruence $$ ax-by\equiv t\,(\operatorname{mod}q) $$ and prove an upper estimate for the number of its solutions. Here $a$, $b$, $t$, and $q$ are given natural numbers, $x$ and $y$ are coprime variables from a given interval such that the number $x/y$ expands in a continued fraction with partial quotients on a finite alphabet $\mathbf{A}\subseteq\mathbb{N}$. For $t=0$, a similar problem has been solved earlier by I. D. Kan and, for $\mathbf{A}=\mathbb{N}$, by N. M. Korobov. In addition, in one of the recent statements of the problem, an additional constraint in the form of a linear inequality was also imposed on the fraction $x/y$.
Keywords: linear inhomogeneous congruence, linear homogeneous congruence, continued fraction, finite alphabet.
@article{MZM_2022_112_3_a9,
     author = {I. D. Kan and V. A. Odnorob},
     title = {Linear {Inhomogeneous} {Congruences} in {Continued} {Fractions} on {Finite} {Alphabets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {412--425},
     publisher = {mathdoc},
     volume = {112},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a9/}
}
TY  - JOUR
AU  - I. D. Kan
AU  - V. A. Odnorob
TI  - Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets
JO  - Matematičeskie zametki
PY  - 2022
SP  - 412
EP  - 425
VL  - 112
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a9/
LA  - ru
ID  - MZM_2022_112_3_a9
ER  - 
%0 Journal Article
%A I. D. Kan
%A V. A. Odnorob
%T Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets
%J Matematičeskie zametki
%D 2022
%P 412-425
%V 112
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a9/
%G ru
%F MZM_2022_112_3_a9
I. D. Kan; V. A. Odnorob. Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 412-425. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a9/