Blow-Up of Solutions of Coupled Parabolic Systems and Hyperbolic Equations
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 391-397.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the blow-up of solutions of coupled systems of nonlinear parabolic and hyperbolic equations of second order is studied. The concavity method and its modifications are used to find sufficient conditions for the blow-up of solutions for an arbitrary positive initial energy of the problem.
Keywords: global nonexistence, blow-up of solutions, coupled system, concavity method.
@article{MZM_2022_112_3_a7,
     author = {J. V. Kalantarova and V. K. Kalantarov},
     title = {Blow-Up of {Solutions} of {Coupled} {Parabolic} {Systems} and {Hyperbolic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {391--397},
     publisher = {mathdoc},
     volume = {112},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a7/}
}
TY  - JOUR
AU  - J. V. Kalantarova
AU  - V. K. Kalantarov
TI  - Blow-Up of Solutions of Coupled Parabolic Systems and Hyperbolic Equations
JO  - Matematičeskie zametki
PY  - 2022
SP  - 391
EP  - 397
VL  - 112
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a7/
LA  - ru
ID  - MZM_2022_112_3_a7
ER  - 
%0 Journal Article
%A J. V. Kalantarova
%A V. K. Kalantarov
%T Blow-Up of Solutions of Coupled Parabolic Systems and Hyperbolic Equations
%J Matematičeskie zametki
%D 2022
%P 391-397
%V 112
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a7/
%G ru
%F MZM_2022_112_3_a7
J. V. Kalantarova; V. K. Kalantarov. Blow-Up of Solutions of Coupled Parabolic Systems and Hyperbolic Equations. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 391-397. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a7/

[1] I. Chueshov, “A reduction principle for coupled nonlinear parabolic-hyperbolic PDE”, J. Evol. Equ., 4 (2004), 591–612 | DOI | MR

[2] Y. Ebihara, “On the global classical solutions of nonlinear hyperbolic-parabolic systems”, Math. Rep. Kyushu Univ., 10:2 (1975/75), 91–97 | MR

[3] Y. Qin, L. Huang, Global Well-Posedness of Nonlinear Parabolic-Hyperbolic Coupled Systems, Birkhäuser, Basel, 2012 | MR

[4] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$”, Arch. Rational Mech. Anal., 51 (1973), 371–386 | DOI | MR

[5] M. O. Korpusov, A. V. Ovchinnikov, A. G. Sveshnikov, E. V. Yushkov, Blow-up in Nonlinear Equations of Mathematical Physics. Theory and Methods, De Gruyter Ser. Nonlinear Anal. Appl., 27, De Gruyter, Berlin, 2018 | MR

[6] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+F(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | MR

[7] H. A. Levine, “Some additional remarks on the nonexistence of global solutions to nonlinear wave equations”, SIAM J. Math. Anal., 5 (1974), 138–146 | DOI | MR

[8] H. A. Levine, “A note on a nonexistence theorem for some nonlinear wave equations”, SIAM J. Math. Anal., 5 (1974), 644–648 | DOI | MR

[9] B. Straughan, Explosive Instabilities in Mechanics, Springer, Berlin, 1998 | MR

[10] L. E. Payne, D. H. Sattinger, “Saddle points and instability of nonlinear hyperbolic equations”, Israel J. Math., 22 (1975), 273–303 | DOI | MR

[11] M. O. Korpusov, “O razrushenii resheniya odnoi nelineinoi sistemy uravnenii s polozhitelnoi energiei”, TMF, 171:3 (2012), 355–369 | DOI | MR

[12] M. O. Korpusov, “O razrushenii resheniya odnoi nelineinoi sistemy uravnenii s polozhitelnoi energiei v teorii polya”, Zh. vychisl. matem. i matem. fiz., 58:3 (2018), 447–458 | DOI

[13] N. Kutev, N. Kolkovska, M. Dimova, “Sign-preserving functionals and blow-up to Klein–Gordon equation with arbitrary high energy”, Appl. Anal., 95:4 (2016), 860–873 | DOI | MR

[14] Y. Wang, “A Sufficient condition for finite time blow up of the nonlinear Klein–Gordon equations with arbitrary positive initial energy”, Proc. Amer. Math. Soc., 136:10 (2008), 3477–3482 | DOI | MR

[15] R. Zeng, Ch. Mu, Sh. Zhou, “A blow-up result for Kirchhoff-type equations with high energy”, Math. Methods Appl. Sci., 34:4 (2011), 479–486 | DOI | MR

[16] J.-L. Lions, Control of distributed singular systems, Gauthier-Villars, Paris, 1985 | MR

[17] V. K. Kalantarov, “Globalnoe povedenie reshenii nachalno kraevoi zadach dlya odnogo klassa sistem nelineinykh uravnenii”, Izv. AN Azerb. SSR Ser. fiz.-tekh. matem. nauk, 8:8 (1987), 47–51

[18] Y. Qin, J. M. Rivera, “Blow-up of solutions to the Cauchy problem in nonlinear one-dimensional thermoelasticity”, J. Math. Anal. Appl., 292 (2004), 160–193 | DOI | MR

[19] H. Ding, J. Zhou, “Global existence and blow-up for a thermoelastic system with $p$-Laplacian”, Appl. Anal., 2021 (2021) | DOI

[20] V. K. Kalantarov, O. A. Ladyzhenskaya, “O vozniknovenii kollapsov dlya kvazilineinykh uravnenii parabolicheskogo i giperbolicheskogo tipov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 10, Zap. nauchn. sem. LOMI, 69, Izd-vo «Nauka», Leningrad. otd., L., 1977, 77–102 | MR | Zbl

[21] M. Nakao, “Global existence to the initial-boundary value problem for a system of nonlinear diffusion and wave equations”, J. Differential Equations, 264:1 (2018), 134–162 | DOI | MR

[22] M. Nakao, “Global existence to the initial-boundary value problem for a system of nonlinear diffusion and wave equations II”, Kyushu J. Math., 72 (2018), 287–306 | DOI | MR