Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_3_a7, author = {J. V. Kalantarova and V. K. Kalantarov}, title = {Blow-Up of {Solutions} of {Coupled} {Parabolic} {Systems} and {Hyperbolic} {Equations}}, journal = {Matemati\v{c}eskie zametki}, pages = {391--397}, publisher = {mathdoc}, volume = {112}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a7/} }
TY - JOUR AU - J. V. Kalantarova AU - V. K. Kalantarov TI - Blow-Up of Solutions of Coupled Parabolic Systems and Hyperbolic Equations JO - Matematičeskie zametki PY - 2022 SP - 391 EP - 397 VL - 112 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a7/ LA - ru ID - MZM_2022_112_3_a7 ER -
J. V. Kalantarova; V. K. Kalantarov. Blow-Up of Solutions of Coupled Parabolic Systems and Hyperbolic Equations. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 391-397. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a7/
[1] I. Chueshov, “A reduction principle for coupled nonlinear parabolic-hyperbolic PDE”, J. Evol. Equ., 4 (2004), 591–612 | DOI | MR
[2] Y. Ebihara, “On the global classical solutions of nonlinear hyperbolic-parabolic systems”, Math. Rep. Kyushu Univ., 10:2 (1975/75), 91–97 | MR
[3] Y. Qin, L. Huang, Global Well-Posedness of Nonlinear Parabolic-Hyperbolic Coupled Systems, Birkhäuser, Basel, 2012 | MR
[4] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$”, Arch. Rational Mech. Anal., 51 (1973), 371–386 | DOI | MR
[5] M. O. Korpusov, A. V. Ovchinnikov, A. G. Sveshnikov, E. V. Yushkov, Blow-up in Nonlinear Equations of Mathematical Physics. Theory and Methods, De Gruyter Ser. Nonlinear Anal. Appl., 27, De Gruyter, Berlin, 2018 | MR
[6] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+F(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | MR
[7] H. A. Levine, “Some additional remarks on the nonexistence of global solutions to nonlinear wave equations”, SIAM J. Math. Anal., 5 (1974), 138–146 | DOI | MR
[8] H. A. Levine, “A note on a nonexistence theorem for some nonlinear wave equations”, SIAM J. Math. Anal., 5 (1974), 644–648 | DOI | MR
[9] B. Straughan, Explosive Instabilities in Mechanics, Springer, Berlin, 1998 | MR
[10] L. E. Payne, D. H. Sattinger, “Saddle points and instability of nonlinear hyperbolic equations”, Israel J. Math., 22 (1975), 273–303 | DOI | MR
[11] M. O. Korpusov, “O razrushenii resheniya odnoi nelineinoi sistemy uravnenii s polozhitelnoi energiei”, TMF, 171:3 (2012), 355–369 | DOI | MR
[12] M. O. Korpusov, “O razrushenii resheniya odnoi nelineinoi sistemy uravnenii s polozhitelnoi energiei v teorii polya”, Zh. vychisl. matem. i matem. fiz., 58:3 (2018), 447–458 | DOI
[13] N. Kutev, N. Kolkovska, M. Dimova, “Sign-preserving functionals and blow-up to Klein–Gordon equation with arbitrary high energy”, Appl. Anal., 95:4 (2016), 860–873 | DOI | MR
[14] Y. Wang, “A Sufficient condition for finite time blow up of the nonlinear Klein–Gordon equations with arbitrary positive initial energy”, Proc. Amer. Math. Soc., 136:10 (2008), 3477–3482 | DOI | MR
[15] R. Zeng, Ch. Mu, Sh. Zhou, “A blow-up result for Kirchhoff-type equations with high energy”, Math. Methods Appl. Sci., 34:4 (2011), 479–486 | DOI | MR
[16] J.-L. Lions, Control of distributed singular systems, Gauthier-Villars, Paris, 1985 | MR
[17] V. K. Kalantarov, “Globalnoe povedenie reshenii nachalno kraevoi zadach dlya odnogo klassa sistem nelineinykh uravnenii”, Izv. AN Azerb. SSR Ser. fiz.-tekh. matem. nauk, 8:8 (1987), 47–51
[18] Y. Qin, J. M. Rivera, “Blow-up of solutions to the Cauchy problem in nonlinear one-dimensional thermoelasticity”, J. Math. Anal. Appl., 292 (2004), 160–193 | DOI | MR
[19] H. Ding, J. Zhou, “Global existence and blow-up for a thermoelastic system with $p$-Laplacian”, Appl. Anal., 2021 (2021) | DOI
[20] V. K. Kalantarov, O. A. Ladyzhenskaya, “O vozniknovenii kollapsov dlya kvazilineinykh uravnenii parabolicheskogo i giperbolicheskogo tipov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 10, Zap. nauchn. sem. LOMI, 69, Izd-vo «Nauka», Leningrad. otd., L., 1977, 77–102 | MR | Zbl
[21] M. Nakao, “Global existence to the initial-boundary value problem for a system of nonlinear diffusion and wave equations”, J. Differential Equations, 264:1 (2018), 134–162 | DOI | MR
[22] M. Nakao, “Global existence to the initial-boundary value problem for a system of nonlinear diffusion and wave equations II”, Kyushu J. Math., 72 (2018), 287–306 | DOI | MR