Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_3_a6, author = {V. V. Gorbatsevich}, title = {On the {Isomorphism} and {Diffeomorphism} of {Compact} {Semisimple} {Lie} {Groups}}, journal = {Matemati\v{c}eskie zametki}, pages = {384--390}, publisher = {mathdoc}, volume = {112}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a6/} }
V. V. Gorbatsevich. On the Isomorphism and Diffeomorphism of Compact Semisimple Lie Groups. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 384-390. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a6/
[1] E. B. Vinberg, V. V. Gorbatsevich, A. L. Onischik, “Stroenie grupp i algebr Li”, Gruppy Li i algebry Li – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 41, VINITI, M., 1990, 5–253 | MR | Zbl
[2] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR
[3] A. Khatcher, Algebraicheskaya topologiya, MTsNMO, M., 2011
[4] M. Mimura, H. Toda, Topology of Lie Groups. I, II, Amer. Math. Soc., Providence, RI, 1991 | MR
[5] V. L. Popov, Underlying Varieties and Group Structures, 2021, arXiv: 2105.12861.v1
[6] H. Toda, “A note on compact semi-simple Lie groups”, Japan. J. Math., 2:2 (1976), 355–358 | DOI | MR
[7] H. Scheerer, “Homotopieaquivalente compacte Liesche gruppen”, Topology, 7 (1968), 227–232 | DOI | MR
[8] S. Boekholt, “Compact Lie groups with isomorphic homotopy groups”, J. Lie Theory, 8 (1988), 183–185 | MR
[9] F. Notbohm, “On the “classifying space” functor for compact Lie groups”, J. London Math. Soc. (2), 52 (1995), 185–198 | DOI | MR
[10] P. Baum, W. Browder, “The cohomology of quotiens of classical groups”, Topology, 3 (1965), 305–336 | DOI | MR
[11] V. V. Gorbatsevich, “On some cohomology invariants of compact homogeneous spaces”, Lie Groups, Their Discrete Subgroups, and Invariant Theory, Adv. Soviet Math., 8, Amer. Math. Soc., Providence, RI, 1992, 69–85 | MR