Existence of Solutions to the Nonlinear Kantorovich Transportation Problem
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 360-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence of solutions to the Kantorovich optimal transportation problem with a nonlinear cost functional generated by a cost function depending on the transport plan. We also consider the case of a cost function depending on the conditional measures of the transport plan. Broad sufficient conditions are obtained for the existence of optimal plans for Radon marginal distributions on completely regular spaces and a lower semicontinuous cost function.
Keywords: Kantorovich problem, conditional measure, nonlinear cost functional, cost function.
@article{MZM_2022_112_3_a3,
     author = {V. I. Bogachev and A. V. Rezbayev},
     title = {Existence of {Solutions} to the {Nonlinear} {Kantorovich} {Transportation} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {360--370},
     publisher = {mathdoc},
     volume = {112},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a3/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - A. V. Rezbayev
TI  - Existence of Solutions to the Nonlinear Kantorovich Transportation Problem
JO  - Matematičeskie zametki
PY  - 2022
SP  - 360
EP  - 370
VL  - 112
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a3/
LA  - ru
ID  - MZM_2022_112_3_a3
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A A. V. Rezbayev
%T Existence of Solutions to the Nonlinear Kantorovich Transportation Problem
%J Matematičeskie zametki
%D 2022
%P 360-370
%V 112
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a3/
%G ru
%F MZM_2022_112_3_a3
V. I. Bogachev; A. V. Rezbayev. Existence of Solutions to the Nonlinear Kantorovich Transportation Problem. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 360-370. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a3/

[1] L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Modelling and Optimisation of Flows on Networks, Lecture Notes in Math., 2062, Springer, Heidelberg, 2013, 1–155 | MR

[2] V. I. Bogachev, A. V. Kolesnikov, “Zadacha Monzha–Kantorovicha: dostizheniya, svyazi i perspektivy”, UMN, 67:5 (407) (2012), 3–110 | DOI | MR | Zbl

[3] S. T. Rachev, L. Rüschendorf, Mass Transportation Problems. I, Springer, New York, 1998 | MR

[4] F. Santambrogio, Optimal Transport for Applied Mathematicians, Birkhäuser, New York, 2015 | MR

[5] C. Villani, Optimal Transport, Old and New, Springer, New York, 2009 | MR

[6] N. Gozlan, C. Roberto, P. M. Samson, P. Tetali, “Kantorovich duality for general transport costs and applications”, J. Funct. Anal., 273:11 (2017), 3327–3405 | DOI | MR

[7] J. J. Alibert, G. Bouchitté, T. Champion, “A new class of costs for optimal transport planning”, European J. Appl. Math., 30:6 (2019), 1229–1263 | DOI | MR

[8] J. Backhoff-Veraguas, M. Beiglböck, G. Pammer, “Existence, duality, and cyclical monotonicity for weak transport costs”, Calc. Var. Partial Differential Equations, 58:203 (2019), 1–28 | MR

[9] B. Acciaio, M. Beiglböck, G. Pammer, “Weak transport for non-convex costs and model-independence in a fixed-income market”, Math. Finance, 31:4 (2021), 1423–1453 | DOI | MR

[10] J. Backhoff-Veraguas, G. Pammer, “Applications of weak transport theory”, Bernoulli J., 28:1 (2022), 370–394 | MR

[11] V. I. Bogachev, Measure Theory. I, II, Springer, Berlin, 2007 | MR

[12] V. I. Bogachev, Weak Convergence of Measures, Amer. Math. Soc., Providence, RI, 2018 | MR

[13] P. Engelking, General Topology, Polish Sci. Publ., Warszawa, 1977 | MR

[14] D. H. Fremlin, R. A. Johnson, E. Wajch, “Countable network weight and multiplication of Borel sets”, Proc. Amer. Math. Soc., 124:9 (1996), 2897–2903 | DOI | MR

[15] D. H. Fremlin, Measure theory. Vol. 4. Topological measure spaces. Part I, II, Colchester, 2006 | MR

[16] V. I. Bogachev, “O sekventsialnykh svoistvakh prostranstv mer”, Matem. zametki, 110:3 (2021), 459–464 | DOI

[17] J. Korman, R. J. McCann, “Optimal transportation with capacity constraints”, Trans. Amer. Math. Soc., 367:3 (2015), 1501–1521 | DOI | MR

[18] V. I. Bogachev, A. N. Doledenok, I. I. Malofeev, “Zadacha Kantorovicha s parametrom i ogranicheniyami na plotnost”, Matem. zametki, 110:6 (2021), 922–926 | DOI