Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_3_a3, author = {V. I. Bogachev and A. V. Rezbayev}, title = {Existence of {Solutions} to the {Nonlinear} {Kantorovich} {Transportation} {Problem}}, journal = {Matemati\v{c}eskie zametki}, pages = {360--370}, publisher = {mathdoc}, volume = {112}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a3/} }
TY - JOUR AU - V. I. Bogachev AU - A. V. Rezbayev TI - Existence of Solutions to the Nonlinear Kantorovich Transportation Problem JO - Matematičeskie zametki PY - 2022 SP - 360 EP - 370 VL - 112 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a3/ LA - ru ID - MZM_2022_112_3_a3 ER -
V. I. Bogachev; A. V. Rezbayev. Existence of Solutions to the Nonlinear Kantorovich Transportation Problem. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 360-370. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a3/
[1] L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Modelling and Optimisation of Flows on Networks, Lecture Notes in Math., 2062, Springer, Heidelberg, 2013, 1–155 | MR
[2] V. I. Bogachev, A. V. Kolesnikov, “Zadacha Monzha–Kantorovicha: dostizheniya, svyazi i perspektivy”, UMN, 67:5 (407) (2012), 3–110 | DOI | MR | Zbl
[3] S. T. Rachev, L. Rüschendorf, Mass Transportation Problems. I, Springer, New York, 1998 | MR
[4] F. Santambrogio, Optimal Transport for Applied Mathematicians, Birkhäuser, New York, 2015 | MR
[5] C. Villani, Optimal Transport, Old and New, Springer, New York, 2009 | MR
[6] N. Gozlan, C. Roberto, P. M. Samson, P. Tetali, “Kantorovich duality for general transport costs and applications”, J. Funct. Anal., 273:11 (2017), 3327–3405 | DOI | MR
[7] J. J. Alibert, G. Bouchitté, T. Champion, “A new class of costs for optimal transport planning”, European J. Appl. Math., 30:6 (2019), 1229–1263 | DOI | MR
[8] J. Backhoff-Veraguas, M. Beiglböck, G. Pammer, “Existence, duality, and cyclical monotonicity for weak transport costs”, Calc. Var. Partial Differential Equations, 58:203 (2019), 1–28 | MR
[9] B. Acciaio, M. Beiglböck, G. Pammer, “Weak transport for non-convex costs and model-independence in a fixed-income market”, Math. Finance, 31:4 (2021), 1423–1453 | DOI | MR
[10] J. Backhoff-Veraguas, G. Pammer, “Applications of weak transport theory”, Bernoulli J., 28:1 (2022), 370–394 | MR
[11] V. I. Bogachev, Measure Theory. I, II, Springer, Berlin, 2007 | MR
[12] V. I. Bogachev, Weak Convergence of Measures, Amer. Math. Soc., Providence, RI, 2018 | MR
[13] P. Engelking, General Topology, Polish Sci. Publ., Warszawa, 1977 | MR
[14] D. H. Fremlin, R. A. Johnson, E. Wajch, “Countable network weight and multiplication of Borel sets”, Proc. Amer. Math. Soc., 124:9 (1996), 2897–2903 | DOI | MR
[15] D. H. Fremlin, Measure theory. Vol. 4. Topological measure spaces. Part I, II, Colchester, 2006 | MR
[16] V. I. Bogachev, “O sekventsialnykh svoistvakh prostranstv mer”, Matem. zametki, 110:3 (2021), 459–464 | DOI
[17] J. Korman, R. J. McCann, “Optimal transportation with capacity constraints”, Trans. Amer. Math. Soc., 367:3 (2015), 1501–1521 | DOI | MR
[18] V. I. Bogachev, A. N. Doledenok, I. I. Malofeev, “Zadacha Kantorovicha s parametrom i ogranicheniyami na plotnost”, Matem. zametki, 110:6 (2021), 922–926 | DOI