Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_3_a12, author = {Kh. M. Shokri}, title = {Zinger {Functions} and {Yukawa} {Couplings}}, journal = {Matemati\v{c}eskie zametki}, pages = {453--473}, publisher = {mathdoc}, volume = {112}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a12/} }
Kh. M. Shokri. Zinger Functions and Yukawa Couplings. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 453-473. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a12/
[1] P. Candelas, X. de la Ossa, P. Green, L. Parkes, “A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory”, Nuclear Phys., B359 (1991), 21–74 | DOI | MR
[2] A. Givental, “The mirror formula for quintic threefolds”, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, 196, Amer. Math. Soc., Providence, RI, 1999, 49–62 | MR
[3] B. H. Lian, K. Liu, S. T. Yau, “Mirror principle. I”, Asian J. Math., 1:4 (1997), 729–763 | DOI | MR
[4] M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, “Holomorphic anomalies in topological field theories”, Nuclear Phys., B405 (1993), 279–304 | DOI | MR
[5] A. Zinger, “Reduced genus one Gromov–Witten invariants”, J. Differential Geom., 83:2 (2009), 407–460 | DOI | MR
[6] A. Zinger, “The reduced genus one Gromov-Witten invariants of Calabi–Yau hypersurfaces”, J. Amer. Math. Soc., 22:3 (2009), 691–737 | DOI | MR
[7] D. Zagier, A. Zinger, “Some properties of hypergeometric series associated with mirror symmetry”, Modular Forms and String Duality, Fields Inst. Commun., 54, Amer. Math. Soc., Providence, RI, 2008, 163–177 | MR
[8] G. Almkvist, C. van Enckevort, D. Van Straten, W. Zudilin, Tables of Calabi–Yau Equations, 2005, arXiv: math/0507430
[9] G. Almkvist, W. Zudilin, “Differential equations, Mirror maps and Zeta values”, Mirror Symmetry. V, AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence, RI, 2006, 481–515 | MR
[10] D. Morrison, “Picard–Fuchs equations and mirror maps for hypersurfaces”, Essay on Mirror Manifolds, Int. Press, Hong Kong, 1992, 241–264 | MR
[11] B. Green, D. Morrison, M. Plesser, “Mirror manifolds in higher dimension”, Comm. Math. Phys., 173 (1995), 559–597 | DOI | MR