Zinger Functions and Yukawa Couplings
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 453-473
Voir la notice de l'article provenant de la source Math-Net.Ru
For the domain $\mathcal{P}=1+x\mathbb{Q}(w)_0[[x]]$, where $\mathbb{Q}(w)_0=\mathbb{Q}(w)\cap\mathbb{Q}[[w]]$, and a function $f(w,x)\in\mathcal{P}$, we consider the Zinger operator $$ \mathbf{M} f(w,x)=\biggl(1+\frac xw\frac{\partial}{\partial x}\biggr)\frac{f(w,x)}{f(0,x)} $$ and define $I_p(x)=\mathbf{M}^p(f(w,x))\mid_{w=0}$. In this article, we study a class of periodic functions under the iterations of $\mathbf{M}$ and show that $I_p$ have interesting properties. A typical element of this class is constructed from the holomorphic solution of a differential equation with maximal unipotent monodromy. For this solution we define a kind of deformation (Zinger deformation) as a member of $\mathcal{P}$. This deformation is a natural generalization of what Zinger did for the hypergeometric function $$ \mathcal{F}(x)=\sum_{d=0}^\infty\biggl(\frac{(nd)!}{(d!)^n}\biggr)x^d. $$ Finally for a family of Calabi–Yau manifolds, we consider the associated Picard–Fuchs equation. Then under the mirror symmetry hypothesis, we show that the Yukawa couplings can be interpreted as these new functions $I_p$.
Keywords:
Zinger functions, Yukawa couplings, mirror symmetry.
Mots-clés : maximal unipotent monodromy, Calabi–Yau equations
Mots-clés : maximal unipotent monodromy, Calabi–Yau equations
@article{MZM_2022_112_3_a12,
author = {Kh. M. Shokri},
title = {Zinger {Functions} and {Yukawa} {Couplings}},
journal = {Matemati\v{c}eskie zametki},
pages = {453--473},
publisher = {mathdoc},
volume = {112},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a12/}
}
Kh. M. Shokri. Zinger Functions and Yukawa Couplings. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 453-473. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a12/