Zinger Functions and Yukawa Couplings
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 453-473.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the domain $\mathcal{P}=1+x\mathbb{Q}(w)_0[[x]]$, where $\mathbb{Q}(w)_0=\mathbb{Q}(w)\cap\mathbb{Q}[[w]]$, and a function $f(w,x)\in\mathcal{P}$, we consider the Zinger operator $$ \mathbf{M} f(w,x)=\biggl(1+\frac xw\frac{\partial}{\partial x}\biggr)\frac{f(w,x)}{f(0,x)} $$ and define $I_p(x)=\mathbf{M}^p(f(w,x))\mid_{w=0}$. In this article, we study a class of periodic functions under the iterations of $\mathbf{M}$ and show that $I_p$ have interesting properties. A typical element of this class is constructed from the holomorphic solution of a differential equation with maximal unipotent monodromy. For this solution we define a kind of deformation (Zinger deformation) as a member of $\mathcal{P}$. This deformation is a natural generalization of what Zinger did for the hypergeometric function $$ \mathcal{F}(x)=\sum_{d=0}^\infty\biggl(\frac{(nd)!}{(d!)^n}\biggr)x^d. $$ Finally for a family of Calabi–Yau manifolds, we consider the associated Picard–Fuchs equation. Then under the mirror symmetry hypothesis, we show that the Yukawa couplings can be interpreted as these new functions $I_p$.
Keywords: Zinger functions, Yukawa couplings, mirror symmetry.
Mots-clés : maximal unipotent monodromy, Calabi–Yau equations
@article{MZM_2022_112_3_a12,
     author = {Kh. M. Shokri},
     title = {Zinger {Functions} and {Yukawa} {Couplings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {453--473},
     publisher = {mathdoc},
     volume = {112},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a12/}
}
TY  - JOUR
AU  - Kh. M. Shokri
TI  - Zinger Functions and Yukawa Couplings
JO  - Matematičeskie zametki
PY  - 2022
SP  - 453
EP  - 473
VL  - 112
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a12/
LA  - ru
ID  - MZM_2022_112_3_a12
ER  - 
%0 Journal Article
%A Kh. M. Shokri
%T Zinger Functions and Yukawa Couplings
%J Matematičeskie zametki
%D 2022
%P 453-473
%V 112
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a12/
%G ru
%F MZM_2022_112_3_a12
Kh. M. Shokri. Zinger Functions and Yukawa Couplings. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 453-473. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a12/

[1] P. Candelas, X. de la Ossa, P. Green, L. Parkes, “A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory”, Nuclear Phys., B359 (1991), 21–74 | DOI | MR

[2] A. Givental, “The mirror formula for quintic threefolds”, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, 196, Amer. Math. Soc., Providence, RI, 1999, 49–62 | MR

[3] B. H. Lian, K. Liu, S. T. Yau, “Mirror principle. I”, Asian J. Math., 1:4 (1997), 729–763 | DOI | MR

[4] M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, “Holomorphic anomalies in topological field theories”, Nuclear Phys., B405 (1993), 279–304 | DOI | MR

[5] A. Zinger, “Reduced genus one Gromov–Witten invariants”, J. Differential Geom., 83:2 (2009), 407–460 | DOI | MR

[6] A. Zinger, “The reduced genus one Gromov-Witten invariants of Calabi–Yau hypersurfaces”, J. Amer. Math. Soc., 22:3 (2009), 691–737 | DOI | MR

[7] D. Zagier, A. Zinger, “Some properties of hypergeometric series associated with mirror symmetry”, Modular Forms and String Duality, Fields Inst. Commun., 54, Amer. Math. Soc., Providence, RI, 2008, 163–177 | MR

[8] G. Almkvist, C. van Enckevort, D. Van Straten, W. Zudilin, Tables of Calabi–Yau Equations, 2005, arXiv: math/0507430

[9] G. Almkvist, W. Zudilin, “Differential equations, Mirror maps and Zeta values”, Mirror Symmetry. V, AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence, RI, 2006, 481–515 | MR

[10] D. Morrison, “Picard–Fuchs equations and mirror maps for hypersurfaces”, Essay on Mirror Manifolds, Int. Press, Hong Kong, 1992, 241–264 | MR

[11] B. Green, D. Morrison, M. Plesser, “Mirror manifolds in higher dimension”, Comm. Math. Phys., 173 (1995), 559–597 | DOI | MR