On the Parametrization of Hyperelliptic Fields with $S$-Units of Degrees~7 and 9
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 444-452.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if $k$ is an algebraically closed field with $\operatorname{char}k=0$, then the set of polynomials $f$ of degree $5$ such that the field $k(x)(\sqrt{f}\,)$ has a nontrivial $S$-unit of degree $7$ or $9$ and the continued fraction expansion of $\sqrt{f}/x$ is periodic is a one-parameter set corresponding to a rational curve with finitely many deleted points.
Keywords: hyperelliptic field, rational curve, Gröbner basis.
Mots-clés : torsion point
@article{MZM_2022_112_3_a11,
     author = {G. V. Fedorov and V. S. Zhgoon and M. M. Petrunin and Yu. N. Shteinikov},
     title = {On the {Parametrization} of {Hyperelliptic} {Fields} with $S${-Units} of {Degrees~7} and 9},
     journal = {Matemati\v{c}eskie zametki},
     pages = {444--452},
     publisher = {mathdoc},
     volume = {112},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a11/}
}
TY  - JOUR
AU  - G. V. Fedorov
AU  - V. S. Zhgoon
AU  - M. M. Petrunin
AU  - Yu. N. Shteinikov
TI  - On the Parametrization of Hyperelliptic Fields with $S$-Units of Degrees~7 and 9
JO  - Matematičeskie zametki
PY  - 2022
SP  - 444
EP  - 452
VL  - 112
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a11/
LA  - ru
ID  - MZM_2022_112_3_a11
ER  - 
%0 Journal Article
%A G. V. Fedorov
%A V. S. Zhgoon
%A M. M. Petrunin
%A Yu. N. Shteinikov
%T On the Parametrization of Hyperelliptic Fields with $S$-Units of Degrees~7 and 9
%J Matematičeskie zametki
%D 2022
%P 444-452
%V 112
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a11/
%G ru
%F MZM_2022_112_3_a11
G. V. Fedorov; V. S. Zhgoon; M. M. Petrunin; Yu. N. Shteinikov. On the Parametrization of Hyperelliptic Fields with $S$-Units of Degrees~7 and 9. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 444-452. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a11/

[1] N. H. Abel, “Ueber die integration der differential-formel $\rho\,dx/\sqrt{R}$ wenn r und $\rho$ ganze functionen sind”, J. Reine Angew. Math., 1 (1826), 185–221 | MR

[2] P. Tchebychev, “Sur l'intégration des différentielles qui contiennent une racine carrée d'un polynome du troisieme ou du quatrieme degré'”, J. Math. Pures Appl., 2 (1857), 168–192

[3] T. G. Berry, “On periodicity of continued fractions in hyperelliptic function fields”, Arch. Math. (Basel), 55:3 (1990), 259–266 | DOI | MR

[4] V. P. Platonov, “Teoretiko-chislovye svoistva giperellipticheskikh polei i problema krucheniya v yakobianakh giperellipticheskikh krivykh nad polem ratsionalnykh chisel”, UMN, 69:1 (415) (2014), 3–38 | DOI | MR | Zbl

[5] W. M. Schmidt, “On continued fractions and diophantine approximation in power series fields”, Acta Arith., 95:2 (2000), 139–166 | DOI | MR

[6] V. P. Platonov, M. M. Petrunin, “Gruppy $S$-edinits i problema periodichnosti nepreryvnykh drobei v giperellipticheskikh polyakh”, Topologiya i fizika, Tr. MIAN, 302, MAIK «Nauka/Interperiodika», M., 2018, 354–376 | DOI | MR

[7] V. P. Platonov, G. V. Fedorov, “O probleme periodichnosti nepreryvnykh drobei v giperellipticheskikh polyakh”, Matem. sb., 209:4 (2018), 54–94 | DOI | MR

[8] V. P. Platonov, M. M. Petrunin, “O konechnosti chisla periodicheskikh razlozhenii v nepreryvnuyu drob $\sqrt{f}$ dlya kubicheskikh mnogochlenov nad polyami algebraicheskikh chisel”, Dokl. AN, 495:1 (2020), 48–54 | MR

[9] V. P. Platonov, G. V. Fedorov, “O probleme klassifikatsii periodicheskikh nepreryvnykh drobei v giperellipticheskikh polyakh”, UMN, 75:4 (454) (2020), 211–212 | DOI | MR

[10] D. S. Kubert, “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc., 33:2 (1976), 193–237 | DOI | MR

[11] A. Sutherland, “Constructing elliptic curves over finite fields with prescribed torsion”, Math. Comp., 81:278 (2012), 1131–1147 | DOI | MR

[12] V. P. Platonov, M. M. Petrunin, Yu. N. Shteinikov, “O probleme periodichnosti razlozheniya v nepreryvnuyu drob elementov giperellipticheskikh polei so stepenyu fundamentalnoi $S$-edinitsy ne vyshe 11”, Dokl. AN, 500:1 (2021), 45–51 | MR

[13] G. V. Fedorov, “O semeistvakh giperellipticheskikh krivykh nad polem ratsionalnykh chisel, yakobiany kotorykh soderzhat tochki krucheniya dannykh poryadkov”, Chebyshevskii sb., 21:1 (2020), 322–340 | DOI

[14] D. Cox, J. Little, D. O'Shea, Ideals, varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer, Cham, 2013 | MR

[15] D. Eisenbud, Commutative Algebra. With a View Toward Algebraic Geometry, Springer, New York, 2013 | MR

[16] D. Eisenbud, C. Huneke, W. Vasconcelos, “Direct methods for primary decomposition”, Invent. Math., 110:2 (1992), 207–235 | DOI | MR

[17] O. N. German, “Dokazatelstvo kriteriya Fozhera dlya algoritma F5”, Matem. zametki, 88:4 (2010), 502–510 | DOI | MR

[18] V. P. Platonov, V. S. Zhgun, M. M. Petrunin, “O probleme periodichnosti razlozhenii v nepreryvnuyu drob $\sqrt{f}$ dlya kubicheskikh mnogochlenov $f$ nad polyami algebraicheskikh chisel”, Matem. sb., 213:3 (2022), 139–170 | DOI