On the Parametrization of Hyperelliptic Fields with $S$-Units of Degrees~7 and 9
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 444-452

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if $k$ is an algebraically closed field with $\operatorname{char}k=0$, then the set of polynomials $f$ of degree $5$ such that the field $k(x)(\sqrt{f}\,)$ has a nontrivial $S$-unit of degree $7$ or $9$ and the continued fraction expansion of $\sqrt{f}/x$ is periodic is a one-parameter set corresponding to a rational curve with finitely many deleted points.
Keywords: hyperelliptic field, rational curve, Gröbner basis.
Mots-clés : torsion point
@article{MZM_2022_112_3_a11,
     author = {G. V. Fedorov and V. S. Zhgoon and M. M. Petrunin and Yu. N. Shteinikov},
     title = {On the {Parametrization} of {Hyperelliptic} {Fields} with $S${-Units} of {Degrees~7} and 9},
     journal = {Matemati\v{c}eskie zametki},
     pages = {444--452},
     publisher = {mathdoc},
     volume = {112},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a11/}
}
TY  - JOUR
AU  - G. V. Fedorov
AU  - V. S. Zhgoon
AU  - M. M. Petrunin
AU  - Yu. N. Shteinikov
TI  - On the Parametrization of Hyperelliptic Fields with $S$-Units of Degrees~7 and 9
JO  - Matematičeskie zametki
PY  - 2022
SP  - 444
EP  - 452
VL  - 112
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a11/
LA  - ru
ID  - MZM_2022_112_3_a11
ER  - 
%0 Journal Article
%A G. V. Fedorov
%A V. S. Zhgoon
%A M. M. Petrunin
%A Yu. N. Shteinikov
%T On the Parametrization of Hyperelliptic Fields with $S$-Units of Degrees~7 and 9
%J Matematičeskie zametki
%D 2022
%P 444-452
%V 112
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a11/
%G ru
%F MZM_2022_112_3_a11
G. V. Fedorov; V. S. Zhgoon; M. M. Petrunin; Yu. N. Shteinikov. On the Parametrization of Hyperelliptic Fields with $S$-Units of Degrees~7 and 9. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 444-452. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a11/