Nonsingular Morse--Smale Flows with Three Periodic Orbits on Orientable $3$-Manifolds
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 426-443
Voir la notice de l'article provenant de la source Math-Net.Ru
The topological equivalence of nonsingular Morse–Smale flows under assumptions of various generality has been considered in many works (see, e.g., [1]–[4]). However, in the case of a small number of periodic orbits, it is possible to significantly simplify the known invariants and, most importantly, bring the classification problem to implementation by describing the admissibility of the obtained invariants. In the recent paper [5], an exhaustive classification of flows with two orbits on any closed $n$-manifolds was obtained. The present paper gives a complete topological classification for flows with three periodic orbits on orientable $3$-manifolds.
Keywords:
nonsingular flow, Morse–Smale flow, topological classification.
@article{MZM_2022_112_3_a10,
author = {O. V. Pochinka and D. D. Shubin},
title = {Nonsingular {Morse--Smale} {Flows} with {Three} {Periodic} {Orbits} on {Orientable} $3${-Manifolds}},
journal = {Matemati\v{c}eskie zametki},
pages = {426--443},
publisher = {mathdoc},
volume = {112},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a10/}
}
TY - JOUR AU - O. V. Pochinka AU - D. D. Shubin TI - Nonsingular Morse--Smale Flows with Three Periodic Orbits on Orientable $3$-Manifolds JO - Matematičeskie zametki PY - 2022 SP - 426 EP - 443 VL - 112 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a10/ LA - ru ID - MZM_2022_112_3_a10 ER -
O. V. Pochinka; D. D. Shubin. Nonsingular Morse--Smale Flows with Three Periodic Orbits on Orientable $3$-Manifolds. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 426-443. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a10/