Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_3_a10, author = {O. V. Pochinka and D. D. Shubin}, title = {Nonsingular {Morse--Smale} {Flows} with {Three} {Periodic} {Orbits} on {Orientable} $3${-Manifolds}}, journal = {Matemati\v{c}eskie zametki}, pages = {426--443}, publisher = {mathdoc}, volume = {112}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a10/} }
TY - JOUR AU - O. V. Pochinka AU - D. D. Shubin TI - Nonsingular Morse--Smale Flows with Three Periodic Orbits on Orientable $3$-Manifolds JO - Matematičeskie zametki PY - 2022 SP - 426 EP - 443 VL - 112 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a10/ LA - ru ID - MZM_2022_112_3_a10 ER -
O. V. Pochinka; D. D. Shubin. Nonsingular Morse--Smale Flows with Three Periodic Orbits on Orientable $3$-Manifolds. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 426-443. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a10/
[1] J. Franks, “Nonsingular smale flows on $s^3$”, Topology, 24:3 (1985), 265–282 | DOI | MR
[2] Ya. L. Umanskii, “Neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti trekhmernykh dinamicheskikh sistem Morsa–Smeila s konechnym chislom osobykh traektorii”, Matem. sb., 181:2 (1990), 212–239 | MR | Zbl
[3] A. O. Prishlyak, “Polnyi topologicheskii invariant potokov Morsa–Smeila i razlozhenie na ruchki trekhmernykh mnogoobrazii”, Fundament. i prikl. matem., 11:4 (2005), 185–196 | MR | Zbl
[4] Yu. Bin, “Behavior 0 nonsingular morse-smale flows on $s^3$”, Discrete Contin. Dyn. Syst., 36:1 (2016), 509 | MR
[5] O. V. Pochinka, D. D. Shubin, “Non-singular morse-smale flows on $n$-manifolds with attractor-repeller dynamics”, Nonlinearity, 35:3 (2022), 1485 | DOI | MR
[6] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR
[7] B. Campos, A. Cordero, J. Martínez Alfaro, P. Vindel, “Nms flows on three-dimensional manifolds with one saddle periodic orbit”, Acta Math. Sin. (Engl. Ser.), 20:1 (2004), 47–56 | DOI | MR
[8] D. D. Shubin, “Topologiya nesuschikh mnogoobrazii nesingulyarnykh potokov s tremya neskruchennymi orbitami”, Izvestiya vuzov. PND, 29:6 (2021), 863–868 | DOI
[9] D. Rolfsen, Knots and Links, Publish or Perish, Houston, TX, 1990 | MR
[10] M. C. Irwin, “A classification of elementary cycles”, Topology, 9:1 (1970), 35–47 | DOI | MR