Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_3_a1, author = {M. V. Balashov}, title = {Covering a {Set} by a {Convex} {Compactum:} {Error} {Estimates} and {Computation}}, journal = {Matemati\v{c}eskie zametki}, pages = {337--349}, publisher = {mathdoc}, volume = {112}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a1/} }
M. V. Balashov. Covering a Set by a Convex Compactum: Error Estimates and Computation. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 337-349. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a1/
[1] A. L. Garkavi, “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, UMN, 19:6 (120) (1964), 139–145 | MR | Zbl
[2] A. R. Alimov, I. G. Tsarkov, “Chebyshevskii tsentr mnozhestva, konstanta Yunga i ikh prilozheniya”, UMN, 74:5 (449) (2019), 3–82 | DOI | MR
[3] Alexey R. Alimov, Igor' G. Tsar'kov, Geometric Approximation Theory, Springer, Cham, 2021 | MR
[4] A. Beck, A. C. Eldar, “Regularization in regression with bounded noise: a Chebyshev center approach”, SIAM J. Matrix Anal. Appl., 29:2 (2007), 606–625 | DOI | MR
[5] Duzhi Wu, Jie Zhou, Aiping Hu, “A new approximate algorithm for the Chebyshev center”, Automatica, 49 (2013), 2483–2488 | DOI | MR
[6] V. Cerone, D. Piga, D. Regruto, “Set-Membership Error-in-Variables IdentificationThrough Convex Relaxation Techniques”, IEEE Trans. Automat. Control, 57:2 (2012), 517–522 | DOI | MR
[7] Sheng Xu, R. M. Freund, “Solution Methodologies for the Smallest Enclosing Circle Problem”, Comput. Optim. Appl., 25 (2003), 283–292 | DOI | MR
[8] Y. Xia, M. Yang, S. Wang, “Chebyshev center of the intersection of balls: complexity, relaxation and approximation”, Math. Program. Ser. A, 187:1-2 (2021), 287–315 | DOI | MR
[9] M. Milanese, R. Tempo, “Optimal algorithms theory for robust estimation and prediction”, IEEE Trans. Automat. Control, 30:8 (1985), 730–738 | DOI | MR
[10] N. D. Botkin, V. L. Turova-Botkina, “An algorithm for finding the Chebyshev center of a convex polyhedron”, Appl. Math. Optim., 29 (1994), 211–222 | DOI | MR
[11] S. I. Dudov, A. S. Dudova, “Ob ustoichivosti resheniya zadach o vneshnei i vnutrennei otsenke vypuklogo kompakta sharom”, Zh. vychisl. matem. i matem. fiz., 47:10 (2007), 1657–1671 | MR
[12] B. B. Abramova, S. I. Dudov, M. A. Osiptsev, “Vneshnyaya otsenka kompakta lebegovym mnozhestvom vypukloi funktsii”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 20:2 (2020), 142–153 | DOI
[13] S. I. Dudov, “Sistematizatsiya zadach po sharovym otsenkam vypuklogo kompakta”, Matem. sb., 206:9 (2015), 99–120 | DOI | MR | Zbl
[14] M. V. Balashov, “Approximate calculation of the Chebyshev center for a convex compact set in $\mathbb R^n$”, J. Convex Anal., 29:1 (2022), 157–164 | MR
[15] M. V. Balashov, “Chebyshev center and inscribed balls: properties and calculations”, Optim. Lett., 2021 (2021) | DOI
[16] Z. Xu, Y. Xia, J. Wang, “Cheaper relaxation and better approximation for multi-ball constrained quadratic optimization and extension”, J. Global Opt., 80 (2021), 341–356 | DOI | MR
[17] L. Dantser, B. Gryunbaum, V. Kli, Teorema Khelli i ee primeneniya, Mir, M., 1968 | MR | Zbl
[18] Dzh. Distel, Geometriya banakhovykh prostranstv. Izbrannye glavy, Vischa shkola, Kiev, 1980 | MR | Zbl
[19] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007 | Zbl
[20] M. V. Balashov, E. S. Polovinikin, “$M$-silno vypuklye podmnozhestva i ikh porozhdayuschie mnozhestva”, Matem. sb., 191:1 (2000), 27–64 | DOI | MR | Zbl
[21] E. S. Polovinikin, “Silno vypuklyi analiz”, Matem. sb., 187:2 (1996), 103–130 | DOI | MR
[22] M. V. Balashov, “On polyhedral approximations in an $n$-dimensional space”, Comput. Math. Math. Phys., 56:10 (2016), 1679–1685 | DOI | MR
[23] M. V. Balashov, D. Repovs, “Polyhedral approximations of strictly convex compacta”, J. Math. Anal. Appl., 374 (2011), 529–537 | DOI | MR
[24] P. M. Gruber, “Approximation of convex bodies”, Convexity and Its Applications, Birkhäuser, Basel, 1983, 131–162 | MR
[25] D. Rosca, “New uniform grids on the sphere”, Astron. Astrophys., 520 (2010), A63 | DOI
[26] D. Rosca, G. Plonka, “Uniform spherical grids via equal area projection from the cube to the sphere”, J. Comput. Appl. Math., 236:3 (2011), 1033–1041 | DOI | MR