Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_3_a0, author = {O. Yu. Aristov}, title = {Holomorphic {Reflexivity} for {Locally} {Finite} and {Profinite} {Groups:} {The} {Abelian} and {General} {Cases}}, journal = {Matemati\v{c}eskie zametki}, pages = {323--336}, publisher = {mathdoc}, volume = {112}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a0/} }
TY - JOUR AU - O. Yu. Aristov TI - Holomorphic Reflexivity for Locally Finite and Profinite Groups: The Abelian and General Cases JO - Matematičeskie zametki PY - 2022 SP - 323 EP - 336 VL - 112 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a0/ LA - ru ID - MZM_2022_112_3_a0 ER -
O. Yu. Aristov. Holomorphic Reflexivity for Locally Finite and Profinite Groups: The Abelian and General Cases. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 323-336. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a0/
[1] S. S. Akbarov, “Golomorfnye funktsii eksponentsialnogo tipa i dvoistvennost dlya grupp Shteina s algebraicheskoi svyaznoi komponentoi edinitsy”, Fundament. i prikl. matem., 14:1 (2008), 3–178 | MR | Zbl
[2] O. Yu. Aristov, “On holomorphic reflexivity conditions for complex Lie groups”, Proc. Edinb. Math. Soc. (2), 64:4 (2021), 800–821 | DOI | MR
[3] O. Yu. Aristov, “Arens–Michael envelopes of nilpotent Lie algebras, holomorphic functions of exponential type and homological epimorphisms”, Tr. MMO, 81, no. 1, MTsNMO, M., 2020, 117–136 | MR
[4] A. Yu. Pirkovskii, “Stably flat completions of universal enveloping algebras”, Dissertationes Math. (Rozprawy Math.), 441 (2006), 1–60 | DOI | MR
[5] O. Yu. Aristov, Holomorphically Finitely Generated Hopf Algebras and Quantum Lie Groups, 2020, arXiv: 2006.12175
[6] S. S. Akbarov, Holomorphic Duality for Countable Discrete Groups, 2020, arXiv: 2009.03372
[7] P. Bonneau, M. Flato, M. Gerstenhaber, G. Pinczon, “The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations”, Comm. Math. Phys., 161 (1994), 125–156 | DOI | MR
[8] O. Yu. Aristov, “Analiticheskii kriterii lokalnoi konechnosti dlya schetnykh polugrupp”, Sib. matem. zhurn., 63:3 (2022), 510–515 | DOI
[9] L. Ribes, P. Zalesskii, Profinite Groups, Springer, Berlin, 2010 | MR
[10] K. H. Hofmann, S. A. Morris, The Lie Theory of Connected Pro-Lie Groups, European Math. Soc., Zürich, 2007 | MR
[11] K. H. Hofmann, S. A. Morris, “Pro-Lie groups: A survey with open problems”, Axioms, 4 (2015), 294–312 | DOI
[12] K. Choiy, A note on the Image of Continuous Homomorphisms of Locally Profinite Groups, https://www.math.purdue.edu/~tongliu/teaching/598/p-adicrep.pdf
[13] B. Casselman, Introduction to Admissible Representations of p-Adic Groups Unpublished Notes, , 1995 https://secure.math.ubc.ca/~cass/research/pdf/Smooth.pdf
[14] F. Bruhat, “Distributions sur un groupe localement compact et applications a l'etude des representations des groupes $p$-adique”, Bull. Soc. Math. France, 89 (1961), 43–75 | DOI | MR
[15] G. L. Litvinov, “Predstavleniya grupp v lokalno vypuklykh prostranstvakh i topologicheskie gruppovye algebry”, Tr. sem. vektor. tenzor. anal., 16 (1968), 267–349 | MR
[16] S. S. Platonov, “Spektralnyi sintez na nulmernykh lokalno kompaktnykh abelevykh gruppakh”, Vestnik rossiiskikh universitetov. Matematika, 24:128 (2019), 450–456 | DOI
[17] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR | Zbl
[18] T. Heintz, J. Wengenroth, “Inductive limits of locally m-convex algebras”, Bull. Belg. Math. Soc. Simon Stevin, 11:1 (2004), 149–152 | DOI | MR
[19] M. Akkar, C. Nacir, “Structure m-convexe dúne algebre limite inductive localement convexe dálgebres de Banach”, Rend. Sem. Mat. Univ. Padova, 95 (1996), 107–126 | MR
[20] G. Köthe, Topological Vector Spaces. I, Springer, New York, 1969 | MR
[21] G. Köthe, Topological Vector Spaces. II, Springer, New York, 1979 | MR
[22] K. D. Bierstedt, “An introduction to locally convex inductive limits”, Functional Analysis and Its Applications, World Sci. Publ., Singapore, 1986, 35–133 | MR
[23] K. Floret, J. Wloka, Einführung in die Theorie der lokalkonvexen Räume, Lecture Notes in Math., 56, Springer, Berlin, 1968 | DOI | MR