Holomorphic Reflexivity for Locally Finite and Profinite Groups: The Abelian and General Cases
Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 323-336.

Voir la notice de l'article provenant de la source Math-Net.Ru

Akbarov's theory of holomorphic reflexivity for topological Hopf algebras has been developed in two directions, namely, by the complication of definitions when expanding the scope and by their simplification when restricting. In the framework of the latter approach, we establish the holomorphic reflexivity for topological Hopf algebras associated with locally finite countable groups and second-countable profinite groups. In the Abelian case, the reflexivity is described in terms close to the classical ones.
Keywords: holomorphic reflexivity, locally finite group, profinite group
Mots-clés : pro-Lie group.
@article{MZM_2022_112_3_a0,
     author = {O. Yu. Aristov},
     title = {Holomorphic {Reflexivity} for {Locally} {Finite} and {Profinite} {Groups:} {The} {Abelian} and {General} {Cases}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--336},
     publisher = {mathdoc},
     volume = {112},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a0/}
}
TY  - JOUR
AU  - O. Yu. Aristov
TI  - Holomorphic Reflexivity for Locally Finite and Profinite Groups: The Abelian and General Cases
JO  - Matematičeskie zametki
PY  - 2022
SP  - 323
EP  - 336
VL  - 112
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a0/
LA  - ru
ID  - MZM_2022_112_3_a0
ER  - 
%0 Journal Article
%A O. Yu. Aristov
%T Holomorphic Reflexivity for Locally Finite and Profinite Groups: The Abelian and General Cases
%J Matematičeskie zametki
%D 2022
%P 323-336
%V 112
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a0/
%G ru
%F MZM_2022_112_3_a0
O. Yu. Aristov. Holomorphic Reflexivity for Locally Finite and Profinite Groups: The Abelian and General Cases. Matematičeskie zametki, Tome 112 (2022) no. 3, pp. 323-336. http://geodesic.mathdoc.fr/item/MZM_2022_112_3_a0/

[1] S. S. Akbarov, “Golomorfnye funktsii eksponentsialnogo tipa i dvoistvennost dlya grupp Shteina s algebraicheskoi svyaznoi komponentoi edinitsy”, Fundament. i prikl. matem., 14:1 (2008), 3–178 | MR | Zbl

[2] O. Yu. Aristov, “On holomorphic reflexivity conditions for complex Lie groups”, Proc. Edinb. Math. Soc. (2), 64:4 (2021), 800–821 | DOI | MR

[3] O. Yu. Aristov, “Arens–Michael envelopes of nilpotent Lie algebras, holomorphic functions of exponential type and homological epimorphisms”, Tr. MMO, 81, no. 1, MTsNMO, M., 2020, 117–136 | MR

[4] A. Yu. Pirkovskii, “Stably flat completions of universal enveloping algebras”, Dissertationes Math. (Rozprawy Math.), 441 (2006), 1–60 | DOI | MR

[5] O. Yu. Aristov, Holomorphically Finitely Generated Hopf Algebras and Quantum Lie Groups, 2020, arXiv: 2006.12175

[6] S. S. Akbarov, Holomorphic Duality for Countable Discrete Groups, 2020, arXiv: 2009.03372

[7] P. Bonneau, M. Flato, M. Gerstenhaber, G. Pinczon, “The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations”, Comm. Math. Phys., 161 (1994), 125–156 | DOI | MR

[8] O. Yu. Aristov, “Analiticheskii kriterii lokalnoi konechnosti dlya schetnykh polugrupp”, Sib. matem. zhurn., 63:3 (2022), 510–515 | DOI

[9] L. Ribes, P. Zalesskii, Profinite Groups, Springer, Berlin, 2010 | MR

[10] K. H. Hofmann, S. A. Morris, The Lie Theory of Connected Pro-Lie Groups, European Math. Soc., Zürich, 2007 | MR

[11] K. H. Hofmann, S. A. Morris, “Pro-Lie groups: A survey with open problems”, Axioms, 4 (2015), 294–312 | DOI

[12] K. Choiy, A note on the Image of Continuous Homomorphisms of Locally Profinite Groups, https://www.math.purdue.edu/~tongliu/teaching/598/p-adicrep.pdf

[13] B. Casselman, Introduction to Admissible Representations of p-Adic Groups Unpublished Notes, , 1995 https://secure.math.ubc.ca/~cass/research/pdf/Smooth.pdf

[14] F. Bruhat, “Distributions sur un groupe localement compact et applications a l'etude des representations des groupes $p$-adique”, Bull. Soc. Math. France, 89 (1961), 43–75 | DOI | MR

[15] G. L. Litvinov, “Predstavleniya grupp v lokalno vypuklykh prostranstvakh i topologicheskie gruppovye algebry”, Tr. sem. vektor. tenzor. anal., 16 (1968), 267–349 | MR

[16] S. S. Platonov, “Spektralnyi sintez na nulmernykh lokalno kompaktnykh abelevykh gruppakh”, Vestnik rossiiskikh universitetov. Matematika, 24:128 (2019), 450–456 | DOI

[17] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR | Zbl

[18] T. Heintz, J. Wengenroth, “Inductive limits of locally m-convex algebras”, Bull. Belg. Math. Soc. Simon Stevin, 11:1 (2004), 149–152 | DOI | MR

[19] M. Akkar, C. Nacir, “Structure m-convexe dúne algebre limite inductive localement convexe dálgebres de Banach”, Rend. Sem. Mat. Univ. Padova, 95 (1996), 107–126 | MR

[20] G. Köthe, Topological Vector Spaces. I, Springer, New York, 1969 | MR

[21] G. Köthe, Topological Vector Spaces. II, Springer, New York, 1979 | MR

[22] K. D. Bierstedt, “An introduction to locally convex inductive limits”, Functional Analysis and Its Applications, World Sci. Publ., Singapore, 1986, 35–133 | MR

[23] K. Floret, J. Wloka, Einführung in die Theorie der lokalkonvexen Räume, Lecture Notes in Math., 56, Springer, Berlin, 1968 | DOI | MR