Hyperinvariant Closed Ideals for a Finitely Quasinilpotent Collection of Operators
Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 269-278.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, it is proved that if $\mathscr C\ne\{0\}$ is a collection of continuous operators with modulus on an $\ell_p$-space ($1\le p\infty$) that is finitely modulus-quasinilpotent at a nonzero positive vector $x_0$ in $\ell_p$, then $\mathscr C$ and its right modulus sub-commutant $\mathscr C'_m$ have a common nontrivial invariant closed ideal.
Keywords: $\ell_p$-space, quasinilpotent operator, operator with modulus, invariant ideal, invariant subspace.
@article{MZM_2022_112_2_a9,
     author = {Junfeng Liu},
     title = {Hyperinvariant {Closed} {Ideals} for a {Finitely} {Quasinilpotent} {Collection} of {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {269--278},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a9/}
}
TY  - JOUR
AU  - Junfeng Liu
TI  - Hyperinvariant Closed Ideals for a Finitely Quasinilpotent Collection of Operators
JO  - Matematičeskie zametki
PY  - 2022
SP  - 269
EP  - 278
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a9/
LA  - ru
ID  - MZM_2022_112_2_a9
ER  - 
%0 Journal Article
%A Junfeng Liu
%T Hyperinvariant Closed Ideals for a Finitely Quasinilpotent Collection of Operators
%J Matematičeskie zametki
%D 2022
%P 269-278
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a9/
%G ru
%F MZM_2022_112_2_a9
Junfeng Liu. Hyperinvariant Closed Ideals for a Finitely Quasinilpotent Collection of Operators. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 269-278. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a9/

[1] N. Aronszajn, K. T. Smith, “Invariant subspaces of completely continuous operators”, Ann. of Math., 60 (1954), 345–350 | DOI | MR | Zbl

[2] B. de Pagter, “Irreducible compact operators”, Math. Z., 192 (1986), 149–153 | DOI | MR | Zbl

[3] P. R. Halmos, “Invariant subspaces of polynomially compact operators”, Pacific J. Math., 16 (1966), 433–437 | DOI | MR | Zbl

[4] V. I. Lomonosov, “Ob invariantnykh podprostranstvakh semeistva operatorov, kommutiruyuschikh s vpolne nepreryvnym”, Funkts. analiz i ego pril., 7:3 (1973), 55–56 | MR | Zbl

[5] P. Meyer-Nieberg, Banach Lattices, Sringer, Berlin, 1991 | MR

[6] M. Liu, P. Liu, “Modulus hyperinvariant subspaces for quasinilpotent operators at a non-zero positive vector on $\ell_p$-spaces”, Arch. Math., 88 (2007), 537–546 | DOI | MR | Zbl