Hyperinvariant Closed Ideals for a Finitely Quasinilpotent Collection of Operators
Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 269-278
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, it is proved that if $\mathscr C\ne\{0\}$ is a collection of continuous operators with modulus on an $\ell_p$-space ($1\le p\infty$) that is finitely modulus-quasinilpotent at a nonzero positive vector $x_0$ in $\ell_p$, then $\mathscr C$ and its right modulus sub-commutant $\mathscr C'_m$ have a common nontrivial invariant closed ideal.
Keywords:
$\ell_p$-space, quasinilpotent operator, operator with modulus, invariant ideal, invariant subspace.
@article{MZM_2022_112_2_a9,
author = {Junfeng Liu},
title = {Hyperinvariant {Closed} {Ideals} for a {Finitely} {Quasinilpotent} {Collection} of {Operators}},
journal = {Matemati\v{c}eskie zametki},
pages = {269--278},
publisher = {mathdoc},
volume = {112},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a9/}
}
Junfeng Liu. Hyperinvariant Closed Ideals for a Finitely Quasinilpotent Collection of Operators. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 269-278. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a9/