Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_2_a9, author = {Junfeng Liu}, title = {Hyperinvariant {Closed} {Ideals} for a {Finitely} {Quasinilpotent} {Collection} of {Operators}}, journal = {Matemati\v{c}eskie zametki}, pages = {269--278}, publisher = {mathdoc}, volume = {112}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a9/} }
Junfeng Liu. Hyperinvariant Closed Ideals for a Finitely Quasinilpotent Collection of Operators. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 269-278. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a9/
[1] N. Aronszajn, K. T. Smith, “Invariant subspaces of completely continuous operators”, Ann. of Math., 60 (1954), 345–350 | DOI | MR | Zbl
[2] B. de Pagter, “Irreducible compact operators”, Math. Z., 192 (1986), 149–153 | DOI | MR | Zbl
[3] P. R. Halmos, “Invariant subspaces of polynomially compact operators”, Pacific J. Math., 16 (1966), 433–437 | DOI | MR | Zbl
[4] V. I. Lomonosov, “Ob invariantnykh podprostranstvakh semeistva operatorov, kommutiruyuschikh s vpolne nepreryvnym”, Funkts. analiz i ego pril., 7:3 (1973), 55–56 | MR | Zbl
[5] P. Meyer-Nieberg, Banach Lattices, Sringer, Berlin, 1991 | MR
[6] M. Liu, P. Liu, “Modulus hyperinvariant subspaces for quasinilpotent operators at a non-zero positive vector on $\ell_p$-spaces”, Arch. Math., 88 (2007), 537–546 | DOI | MR | Zbl