Exponent of Convergence of a Sequence of Ergodic Averages
Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 251-262

Voir la notice de l'article provenant de la source Math-Net.Ru

For a sequence of ergodic averages, we consider its exponent of convergence, which is a numerical characteristic of two-sided power-law estimates of the rate of pointwise convergence of this sequence. Criteria for the boundary values 1 and $\infty$ of the exponent of convergence are given. Functions cohomologous to zero with a given the exponent of convergence are also described.
Keywords: Birkhoff's ergodic theorem, rates of convergence in ergodic theorems, the exponent of convergence, Tanny–Woś spaces.
@article{MZM_2022_112_2_a7,
     author = {I. V. Podvigin},
     title = {Exponent of {Convergence} of a {Sequence} of {Ergodic} {Averages}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {251--262},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a7/}
}
TY  - JOUR
AU  - I. V. Podvigin
TI  - Exponent of Convergence of a Sequence of Ergodic Averages
JO  - Matematičeskie zametki
PY  - 2022
SP  - 251
EP  - 262
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a7/
LA  - ru
ID  - MZM_2022_112_2_a7
ER  - 
%0 Journal Article
%A I. V. Podvigin
%T Exponent of Convergence of a Sequence of Ergodic Averages
%J Matematičeskie zametki
%D 2022
%P 251-262
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a7/
%G ru
%F MZM_2022_112_2_a7
I. V. Podvigin. Exponent of Convergence of a Sequence of Ergodic Averages. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 251-262. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a7/