Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity
Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 227-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains the proof of the existence of two different positive solutions of the problem $$ \frac{\partial}{\partial z_i}\biggl(a_{ij}(z) \frac{\partial u}{\partial z_j}\biggr)+v(x)u^{q-1}+ \mu u^{p-1}=0, \qquad z\in \Omega, \quad u|_{\partial\Omega}=0, $$ involving convex and concave nonlinearities, the parameter $\mu=\operatorname{const}$, and the variables $z=(x,y) \in \mathbb{R}^n \times \mathbb{R}^{N-n}$. The coefficient matrix $A=\{a_{ij}(z)\}_{i,j=1}^N$ satisfies the nonuniform ellipticity condition $$ C_1(\omega(x)|\xi|^2+|\eta|^2)\le A(z) \zeta \cdot \zeta \le C_2(\omega(x)|\xi|^2+|\eta|^2) $$ in a bounded domain $\Omega \subset \mathbb{R}^N$, $\zeta=(\xi,\eta) \in \mathbb{R}^n \times \mathbb{R}^{N-n}$, $\zeta \ne 0$. To achieve the goal, the authors consider the conditions on the range of nonlinearity exponents $q \in (2,2N/(N-2))$ and $p\in (1,N/(N-1))$ (or $p\in (1, 2)$ and the additional condition $v^{-p/(q-p)}\in L_1(\Omega)$) and $\mu \in (0,\Lambda)$ for a sufficiently small $\Lambda$; positive weight functions $v\in A_\infty$, $\omega \in A_2$ belong to the corresponding Muckenhoupt classes in the metric of $n$-dimensional Euclidean space and also the balance condition of Chanillo–Wheeden type holds.
Keywords: nonuniformly elliptic equations, convex-concave nonlinearity, degenerate elliptic equation, Dirichlet problem, Sobolev space.
@article{MZM_2022_112_2_a6,
     author = {F. Mamedov and G. Gasymov},
     title = {Positive {Solutions} of {Nonuniformly} {Elliptic} {Equations} with {Weighted} {Convex-Concave} {Nonlinearity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {227--250},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a6/}
}
TY  - JOUR
AU  - F. Mamedov
AU  - G. Gasymov
TI  - Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity
JO  - Matematičeskie zametki
PY  - 2022
SP  - 227
EP  - 250
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a6/
LA  - ru
ID  - MZM_2022_112_2_a6
ER  - 
%0 Journal Article
%A F. Mamedov
%A G. Gasymov
%T Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity
%J Matematičeskie zametki
%D 2022
%P 227-250
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a6/
%G ru
%F MZM_2022_112_2_a6
F. Mamedov; G. Gasymov. Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 227-250. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a6/

[1] A. Ambrosetti, H. Brezis, G. Cerami, “Combined effects of concave and convex nonlinearities in some elliptic problems”, J. Funct. Anal., 122 (1994), 519–543 | DOI | MR | Zbl

[2] L. Domascelli, M. Grossi, F. Pacella, “Qualitative properties of positive solutions of semi-linear elliptic equations in symmetric domains via the maximum principle”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 16:5 (1999), 631–652 | DOI | MR

[3] J. Garcia-Azero, J. Manfredi, P. Alonso, “Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations”, Commun. Contemp. Math., 2 (2000), 385–404 | DOI | MR

[4] Z. Guo, Z. Zhang, “$W^{1,p}$ versus $C^1$ local minimizers and multiplicity results for quasilinear elliptic equations”, J. Math. Anal. Appl., 286 (2003), 32–50 | DOI | MR | Zbl

[5] S. Hu, N. S. Papageorgiou, “Multiplicity of solutions for parametric p-Laplacian equations with nonlinearity concave near the origin”, Tohoku Math. J., 62 (2010), 137–162 | MR | Zbl

[6] S. Marano, N. S. Papageorgiou, “Positive solutions to a Dirichlet problem with p-Laplacian and concave-convex nonlinearity depending on a parameter”, Comm. Pure Appl. Anal., 12 (2013), 815–829 | DOI | MR | Zbl

[7] N. S. Papageorgiou, V. D. Radulescu, “Combined effects of of concave-convex nonlinearities and indefinite potential in some elliptic problems”, Asymptot. Anal., 93 (2015), 259–279 | DOI | MR | Zbl

[8] F. Catrina, M. Furtado, M. Montenegro, “Positive solutions for nonlinear elliptic equations with fast increasing weights”, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1157–1178 | DOI | MR | Zbl

[9] M. Furtado, R. Ruviaro, J. P. Silva, “Two solutions for an elliptic equation with fast increasing weight and concave-convex nonlinearities”, J. Math. Anal. Apll., 416 (2014), 698–709 | DOI | MR | Zbl

[10] X. Qian, J. Chen, “Sign changing solutions for elliptic equations with fast increasing weight and concave-convex nonlinearities”, Electron. J. Differential Equations, 2017 (2017), Art no. 229 | MR

[11] M. Escobedo, O. Kavian, “Variational problems related to self-similar solutions of the heat equation”, Nonlinear Anal., 11 (1987), 1103–1133 | DOI | MR | Zbl

[12] A. Haraux, F. Weissler, “Nonunqueness for a semilinear initial value problem”, Indiana Univ. Math. J., 31 (1982), 167–189 | DOI | MR | Zbl

[13] Y. Jabri, The Mountain Pass Theorem, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[14] F. I. Mamedov, S. Mammadli, Y. Shukurov, “On compact and bounded embedding in variable exponent Sobolev spaces and its applications”, Arabian J. Math., 9 (2020), 401–414 | DOI | MR | Zbl

[15] A. Bellaiche, Sub-Riemannian Geometry, Birkhauser, Basel, 1996 | DOI

[16] M. Gromov, “Carnot–Caratheodory spaces seen from within”, Sub-Riemannian Geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl

[17] N. Th. Varopoulos, L. Sallof-Coste, T. Coulhon, Analysis and Geometry on Groups, Cambridge Tracts in Math., 100, Cambridge Univ. Press, Cambridge, 1992 | MR

[18] F. I. Mamedov, R. A. Amanov, “O nekotorykh neravnomernykh sluchayakh vesovykh neravenstv Soboleva i Puankare”, Algebra i analiz, 20:3 (2008), 163–186 | MR | Zbl

[19] F. I. Mamedov, Y. Shukurov, “A Sawyer-type sufficient condition for the weighted Poincare inequality”, Positivity, 22:3 (2018), 687–699 | DOI | MR | Zbl

[20] F. I. Mamedov, O. G. Azizov, “On weighted Sobolev type inequalities in spaces of differentiable functions”, Azerb. J. Math., 4:2 (2014), 99–107 | MR | Zbl

[21] R. A. Amanov, F. I. Mamedov, “O regulyarnosti reshenii vyrozhdayuschikhsya ellipticheskikh uravnenii divergentnogo vida”, Matem. zametki, 83:1 (2008), 3–13 | DOI | MR | Zbl

[22] S. Chanillo, R. L. Wheeden, “Weighted Poincare and Sobolev inequalities and estimates of the Peano maximal function”, Amer. J. Math., 107 (1985), 1191–1226 | DOI | MR | Zbl

[23] H. Aimar, “Elliptic and parabolic BMO and Harnack's inequality”, Trans. Amer. Math. Soc., 306:1 (1988), 265–276 | MR | Zbl

[24] F. I. Mamedov, “A Poincare's inequality with non-uniformly degenerating gradient”, Monatsh. Math., 194:1 (2021), 151–165 | DOI | MR | Zbl

[25] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011 | MR | Zbl