Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity
Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 227-250

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains the proof of the existence of two different positive solutions of the problem $$ \frac{\partial}{\partial z_i}\biggl(a_{ij}(z) \frac{\partial u}{\partial z_j}\biggr)+v(x)u^{q-1}+ \mu u^{p-1}=0, \qquad z\in \Omega, \quad u|_{\partial\Omega}=0, $$ involving convex and concave nonlinearities, the parameter $\mu=\operatorname{const}$, and the variables $z=(x,y) \in \mathbb{R}^n \times \mathbb{R}^{N-n}$. The coefficient matrix $A=\{a_{ij}(z)\}_{i,j=1}^N$ satisfies the nonuniform ellipticity condition $$ C_1(\omega(x)|\xi|^2+|\eta|^2)\le A(z) \zeta \cdot \zeta \le C_2(\omega(x)|\xi|^2+|\eta|^2) $$ in a bounded domain $\Omega \subset \mathbb{R}^N$, $\zeta=(\xi,\eta) \in \mathbb{R}^n \times \mathbb{R}^{N-n}$, $\zeta \ne 0$. To achieve the goal, the authors consider the conditions on the range of nonlinearity exponents $q \in (2,2N/(N-2))$ and $p\in (1,N/(N-1))$ (or $p\in (1, 2)$ and the additional condition $v^{-p/(q-p)}\in L_1(\Omega)$) and $\mu \in (0,\Lambda)$ for a sufficiently small $\Lambda$; positive weight functions $v\in A_\infty$, $\omega \in A_2$ belong to the corresponding Muckenhoupt classes in the metric of $n$-dimensional Euclidean space and also the balance condition of Chanillo–Wheeden type holds.
Keywords: nonuniformly elliptic equations, convex-concave nonlinearity, degenerate elliptic equation, Dirichlet problem, Sobolev space.
@article{MZM_2022_112_2_a6,
     author = {F. Mamedov and G. Gasymov},
     title = {Positive {Solutions} of {Nonuniformly} {Elliptic} {Equations} with {Weighted} {Convex-Concave} {Nonlinearity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {227--250},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a6/}
}
TY  - JOUR
AU  - F. Mamedov
AU  - G. Gasymov
TI  - Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity
JO  - Matematičeskie zametki
PY  - 2022
SP  - 227
EP  - 250
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a6/
LA  - ru
ID  - MZM_2022_112_2_a6
ER  - 
%0 Journal Article
%A F. Mamedov
%A G. Gasymov
%T Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity
%J Matematičeskie zametki
%D 2022
%P 227-250
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a6/
%G ru
%F MZM_2022_112_2_a6
F. Mamedov; G. Gasymov. Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 227-250. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a6/