Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_2_a4, author = {A. L. Delitsyn}, title = {Fast {Algorithms} for {Solving} the {Inverse} {Scattering} {Problem}}, journal = {Matemati\v{c}eskie zametki}, pages = {198--217}, publisher = {mathdoc}, volume = {112}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a4/} }
A. L. Delitsyn. Fast Algorithms for Solving the Inverse Scattering Problem. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 198-217. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a4/
[1] M. I. Yousefi, F. R. Kschischang, “Information transmission using the nonlinear Fourier transform. Part I: Mathematical tools”, IEEE Trans. Inform. Theory, 60:7 (2014), 4312–4328 | DOI | MR | Zbl
[2] M. I. Yousefi, F. R. Kschischang, “Information transmission using the nonlinear Fourier transform. Part II: Numerical Methods”, IEEE Trans. Inform. Theory, 60:7 (2014), 4329–4345 | DOI | MR | Zbl
[3] M. I. Yousefi, F. R. Kschischang, “Information transmission using the nonlinear Fourier transform. Part III: Spectrum Modulation”, IEEE Trans. Inform. Theory, 60:7 (2014), 4346–4369 | DOI | MR | Zbl
[4] J. Ginibre, G. Velo, “On a class of nonlinear Schrodinger equations”, J. Funct. Anal., 32 (1979), 1–32 | DOI | MR | Zbl
[5] W. A. Strauss, “Mathematical aspects of classical nonlinear field equations”, Nonlinear Problems in Theoretical Physics, Lect. Notes in Phys., 98, Springer, Berlin, 1979, 123–149 | DOI | MR
[6] M. Tsutsumi, “Sobolev spaces and repeadly decreased solutions of some nonlinear dispersive wave equations”, J. Differential Equations, 42:2 (1981), 260–281 | DOI | MR | Zbl
[7] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR
[8] T. Kormen, Ch. Leizerson, R. Rivest, K. Shtain, Algoritmy. Postroenie i analiz, Vilyams, M., 2013 | MR
[9] D. Rafique, “Fiber nonlinearity compensation: commercial applications and complexity analysis”, J. Lightwave Technology, 34:2 (2016), 544–553 | DOI
[10] Dzh. L. Lem, Vvedenie v teoriyu solitonov, Mir, M., 1983
[11] V. E. Zakharov, A. B. Shabat, Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln, IYaF, Novosibirsk, 1971
[12] V. A. Marchenko, “Vosstanovlenie potentsialnoi energii po fazam rasseyannykh voln”, Dokl. AN, 104:5 (1955), 695–698 | MR | Zbl
[13] I. M. Gelfand, B. M. Levitan, “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR. Ser. matem., 15:4 (1951), 309–360 | MR | Zbl
[14] S. K. Turitsyn, J. E. Prilepsky, S. T. Le, S. Wahls, L. L. Frumin, M. Kamalian, S. A. Derevyanko, “Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives”, Optica, 2017, no. 4, 307–322 | DOI
[15] V. Vaibhav, “Fast inverse nonlinear Fourier transformation using exponential one-step methods: Darboux transformation”, Phys. Rev. E, 96:6 (2017), 063302-1–063302-35 | DOI | MR
[16] W. K. McClary, “Fast seismic inversion”, Geophysics, 48:10 (1983), 1371–1372 | DOI
[17] V. Vaibhav, “Nonlinear Fourier transform of time-limited and one-sided signals”, J. Phys. A, 51:42 (2018), Art no. 425201 | DOI | MR
[18] S. Wahls, H. V. Poor, “Fast numerical nonlinear Fourier transforms”, IEEE Trans. Inform. Theory, 61:12 (2015), 6957–6974 | DOI | MR | Zbl
[19] S. Chimmalgi, P. J. Prins, S. Wahls, “Fast nonlinear Fourier transform algorithms using higher order exponential integrators”, IEEE Access, 7:1 (2019), 145161–145176 | DOI
[20] M. G. Krein, “Ob opredelenii potentsiala chastitsy po ee $S$-funktsii”, Dokl. AN, 105:4 (1955), 433–436 | MR | Zbl
[21] O. V. Belai, L. L. Frumin, E. V. Podivilov, D. A. Shapiro, “Efficient numerical method of the fiber Bragg grating synthesis”, J. Opt. Soc. Amer. B Opt. Phys., 24:7 (2007), 1451–1457 | DOI | MR
[22] V. V. Voevodin, E. E. Tyrtyshnikov, Vychislitelnye protsessy s teplitsevymi matritsami, Nauka, M., 1987 | MR | Zbl
[23] F. de Hoog, “A New Algorithm for Solving Toeplitz Systems of Equations”, Linear Algebra Appl., 88/89 (1987), 123–138 | DOI | MR | Zbl
[24] Dzh. Golub, E. Ch. Van-Loun, Matrichnye vychisleniya, Mir, M., 1999
[25] D. A. Bini, L. Gemignani, V. Y. Pan, “Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations”, Numer. Math., 100:3 (2005), 373–408 | DOI | MR | Zbl
[26] V. Y. Pan, “Solving a polynomial equation: some history and recent progress”, SIAM Rev., 39:2 (1997), 187–220 | DOI | MR | Zbl
[27] L. M. Delves, J. N. Lyness, “A Numerical Method for Locating the Zeros of an Analytic Function”, Math. Comp., 21:100 (1967), 543–560 | DOI | MR | Zbl
[28] A. M. Bruckstein, B. C. Levy, T. Kailath, “Differential methods in inverse scattering”, SIAM J. Appl. Math., 45:2 (1985), 312–335 | DOI | MR | Zbl
[29] A. M. Bruckstein, I. Koltracht, T. Kailath, “Inverse scattering with noisy data”, SIAM J. Sci. Statist. Comput., 7:4 (1986), 1331–1349 | DOI | MR | Zbl
[30] A. M. Bruckstein, T. Kailath, “Inverse scattering for discrete transmission-line models”, SIAM Rev., 29:3 (1987), 359–389 | DOI | MR | Zbl
[31] J. Skaar, L. Wang, T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling”, IEEE J. Quant. Electron., 37:2 (2001), 165–173 | DOI
[32] L. Poladian, “On the synthesis of fiber Bragg gratings by layer peeling”, IEEE J. Quant. Electron., 37:2 (2001), 165–173 | DOI
[33] L. Poladian, “Simple grating synthesis algorithm”, Optics Lett., 25:11 (2000), 787–789 | DOI