Fast Algorithms for Solving the Inverse Scattering Problem
Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 198-217

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of numerical solution of a nonlinear Schrödinger equation is considered from the point of view of applications to the compensation of signal distortions in a fiber optic communication line. The problem of constructing fast algorithms for the direct and inverse scattering problems for the Zakharov–Shabat system of equations is studied. An overview of the main methods used currently is given. The time complexity of the algorithms is described together with their applicability to realistic signals.
Keywords: inverse scattering problem, nonlinear Schrödinger equation, Zakharov–Shabat equations, fast algorithms.
@article{MZM_2022_112_2_a4,
     author = {A. L. Delitsyn},
     title = {Fast {Algorithms} for {Solving} the {Inverse} {Scattering} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {198--217},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a4/}
}
TY  - JOUR
AU  - A. L. Delitsyn
TI  - Fast Algorithms for Solving the Inverse Scattering Problem
JO  - Matematičeskie zametki
PY  - 2022
SP  - 198
EP  - 217
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a4/
LA  - ru
ID  - MZM_2022_112_2_a4
ER  - 
%0 Journal Article
%A A. L. Delitsyn
%T Fast Algorithms for Solving the Inverse Scattering Problem
%J Matematičeskie zametki
%D 2022
%P 198-217
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a4/
%G ru
%F MZM_2022_112_2_a4
A. L. Delitsyn. Fast Algorithms for Solving the Inverse Scattering Problem. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 198-217. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a4/