Freiman $t$-Spread Principal Borel Ideals
Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 188-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

An equigenerated monomial ideal $I$ is a Freiman ideal if $\mu(I^2)=\ell(I)\mu(I)-{\ell(I)\choose 2}$, where $\ell(I)$ is the analytic spread of $I$ and $\mu(I)$ is the least number of monomial generators of $I$. Freiman ideals are special since there exists an exact formula computing the least number of monomial generators of any of their powers. In this paper we give a complete classification of Freiman $t$-spread principal Borel ideals.
Keywords: Freiman ideal, sorted ideal, $t$-spread principal Borel ideal, sorted graph.
@article{MZM_2022_112_2_a3,
     author = {Guangjun Zhu and Yakun Zhao and Yijun Cui},
     title = {Freiman $t${-Spread} {Principal} {Borel} {Ideals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {188--197},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a3/}
}
TY  - JOUR
AU  - Guangjun Zhu
AU  - Yakun Zhao
AU  - Yijun Cui
TI  - Freiman $t$-Spread Principal Borel Ideals
JO  - Matematičeskie zametki
PY  - 2022
SP  - 188
EP  - 197
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a3/
LA  - ru
ID  - MZM_2022_112_2_a3
ER  - 
%0 Journal Article
%A Guangjun Zhu
%A Yakun Zhao
%A Yijun Cui
%T Freiman $t$-Spread Principal Borel Ideals
%J Matematičeskie zametki
%D 2022
%P 188-197
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a3/
%G ru
%F MZM_2022_112_2_a3
Guangjun Zhu; Yakun Zhao; Yijun Cui. Freiman $t$-Spread Principal Borel Ideals. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 188-197. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a3/

[1] S. Eliahou, J. Herzog, M. Mohammadi Saem, “Monomial ideals with tiny squares”, J. Algebra, 514 (2018), 99–112 | DOI | MR | Zbl

[2] G. A. Freiman, Foundations of a Structural Theory of Set Addition, Amer. Math. Soc., Providence, RI, 1973 | MR | Zbl

[3] J. Herzog, M. Mohammadi Saem, N. Zamani, “On the number of generators of powers of an ideal”, Internat. J. Algebra Comput., 29:5 (2019), 827–847 | DOI | MR | Zbl

[4] J. Herzog, G. J. Zhu, “Freiman ideals”, Comm. Algebra, 47:1 (2019), 407–423 | DOI | MR | Zbl

[5] J. Herzog, T. Hibi, G. Zhu, “The relevance of Freiman's theorem for combinatorial commutative algebra”, Math. Z., 291 (2019), 999–1014 | DOI | MR | Zbl

[6] B. Drabkin, L. Guerrieri, “On quasi-equigenerated and Freiman cover ideals of graphs”, Comm. Algebra, 48:10 (2020), 4413–4435 | DOI | MR | Zbl

[7] J. Herzog, G. J. Zhu, “Sortable Freiman Ideals”, Math. Notes, 107:6 (2020), 916–922 | DOI | MR

[8] G. J. Zhu, Y. K. Zhao, Y. J. Cui, “Freiman Cover Ideals of Unmixed Bipartite Graphs”, Math. Notes, 110:3 (2021), 440–448 | DOI | MR | Zbl

[9] G. J. Zhu, Y. K. Zhao, S. Y. Duan, Y. L. Yang, Freiman–Borel Type Ideals, 2022, arXiv: 2201.08240

[10] V. Ene, J. Herzog, A. Asloob Qureshi, “$t$-spread strongly stable ideals”, Comm. Algebra, 47:12 (2019), 5303–5316 | DOI | MR | Zbl

[11] CoCoATeam, CoCoA: A System for Doing Computations in Commutative Algebra, http://cocoa.dima.unige.it

[12] B. Sturmfels, Gröbner Bases and Convex Polytopes, Amer. Math. Soc., Providence, RI, 1995 | MR

[13] V. Ene, J. Herzog, Gröbner Bases in Commutative Algebra, Grad. Stud. Math., 130, Amer. Math. Soc., Providence, RI, 2012 | MR