Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_2_a3, author = {Guangjun Zhu and Yakun Zhao and Yijun Cui}, title = {Freiman $t${-Spread} {Principal} {Borel} {Ideals}}, journal = {Matemati\v{c}eskie zametki}, pages = {188--197}, publisher = {mathdoc}, volume = {112}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a3/} }
Guangjun Zhu; Yakun Zhao; Yijun Cui. Freiman $t$-Spread Principal Borel Ideals. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 188-197. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a3/
[1] S. Eliahou, J. Herzog, M. Mohammadi Saem, “Monomial ideals with tiny squares”, J. Algebra, 514 (2018), 99–112 | DOI | MR | Zbl
[2] G. A. Freiman, Foundations of a Structural Theory of Set Addition, Amer. Math. Soc., Providence, RI, 1973 | MR | Zbl
[3] J. Herzog, M. Mohammadi Saem, N. Zamani, “On the number of generators of powers of an ideal”, Internat. J. Algebra Comput., 29:5 (2019), 827–847 | DOI | MR | Zbl
[4] J. Herzog, G. J. Zhu, “Freiman ideals”, Comm. Algebra, 47:1 (2019), 407–423 | DOI | MR | Zbl
[5] J. Herzog, T. Hibi, G. Zhu, “The relevance of Freiman's theorem for combinatorial commutative algebra”, Math. Z., 291 (2019), 999–1014 | DOI | MR | Zbl
[6] B. Drabkin, L. Guerrieri, “On quasi-equigenerated and Freiman cover ideals of graphs”, Comm. Algebra, 48:10 (2020), 4413–4435 | DOI | MR | Zbl
[7] J. Herzog, G. J. Zhu, “Sortable Freiman Ideals”, Math. Notes, 107:6 (2020), 916–922 | DOI | MR
[8] G. J. Zhu, Y. K. Zhao, Y. J. Cui, “Freiman Cover Ideals of Unmixed Bipartite Graphs”, Math. Notes, 110:3 (2021), 440–448 | DOI | MR | Zbl
[9] G. J. Zhu, Y. K. Zhao, S. Y. Duan, Y. L. Yang, Freiman–Borel Type Ideals, 2022, arXiv: 2201.08240
[10] V. Ene, J. Herzog, A. Asloob Qureshi, “$t$-spread strongly stable ideals”, Comm. Algebra, 47:12 (2019), 5303–5316 | DOI | MR | Zbl
[11] CoCoATeam, CoCoA: A System for Doing Computations in Commutative Algebra, http://cocoa.dima.unige.it
[12] B. Sturmfels, Gröbner Bases and Convex Polytopes, Amer. Math. Soc., Providence, RI, 1995 | MR
[13] V. Ene, J. Herzog, Gröbner Bases in Commutative Algebra, Grad. Stud. Math., 130, Amer. Math. Soc., Providence, RI, 2012 | MR