Freiman $t$-Spread Principal Borel Ideals
Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 188-197

Voir la notice de l'article provenant de la source Math-Net.Ru

An equigenerated monomial ideal $I$ is a Freiman ideal if $\mu(I^2)=\ell(I)\mu(I)-{\ell(I)\choose 2}$, where $\ell(I)$ is the analytic spread of $I$ and $\mu(I)$ is the least number of monomial generators of $I$. Freiman ideals are special since there exists an exact formula computing the least number of monomial generators of any of their powers. In this paper we give a complete classification of Freiman $t$-spread principal Borel ideals.
Keywords: Freiman ideal, sorted ideal, $t$-spread principal Borel ideal, sorted graph.
@article{MZM_2022_112_2_a3,
     author = {Guangjun Zhu and Yakun Zhao and Yijun Cui},
     title = {Freiman $t${-Spread} {Principal} {Borel} {Ideals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {188--197},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a3/}
}
TY  - JOUR
AU  - Guangjun Zhu
AU  - Yakun Zhao
AU  - Yijun Cui
TI  - Freiman $t$-Spread Principal Borel Ideals
JO  - Matematičeskie zametki
PY  - 2022
SP  - 188
EP  - 197
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a3/
LA  - ru
ID  - MZM_2022_112_2_a3
ER  - 
%0 Journal Article
%A Guangjun Zhu
%A Yakun Zhao
%A Yijun Cui
%T Freiman $t$-Spread Principal Borel Ideals
%J Matematičeskie zametki
%D 2022
%P 188-197
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a3/
%G ru
%F MZM_2022_112_2_a3
Guangjun Zhu; Yakun Zhao; Yijun Cui. Freiman $t$-Spread Principal Borel Ideals. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 188-197. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a3/