Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_2_a2, author = {E. L. Gladin and A. V. Gasnikov and E. S. Ermakova}, title = {Vaidya's {Method} for {Convex} {Stochastic} {Optimization} {Problems} in {Small} {Dimension}}, journal = {Matemati\v{c}eskie zametki}, pages = {179--187}, publisher = {mathdoc}, volume = {112}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a2/} }
TY - JOUR AU - E. L. Gladin AU - A. V. Gasnikov AU - E. S. Ermakova TI - Vaidya's Method for Convex Stochastic Optimization Problems in Small Dimension JO - Matematičeskie zametki PY - 2022 SP - 179 EP - 187 VL - 112 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a2/ LA - ru ID - MZM_2022_112_2_a2 ER -
%0 Journal Article %A E. L. Gladin %A A. V. Gasnikov %A E. S. Ermakova %T Vaidya's Method for Convex Stochastic Optimization Problems in Small Dimension %J Matematičeskie zametki %D 2022 %P 179-187 %V 112 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a2/ %G ru %F MZM_2022_112_2_a2
E. L. Gladin; A. V. Gasnikov; E. S. Ermakova. Vaidya's Method for Convex Stochastic Optimization Problems in Small Dimension. Matematičeskie zametki, Tome 112 (2022) no. 2, pp. 179-187. http://geodesic.mathdoc.fr/item/MZM_2022_112_2_a2/
[1] B. E. Woodworth, J. Wang, A. Smith, B. McMahan, N. Srebro, “Graph Oracle Models, Lower Bounds, and Gaps for Parallel Stochastic Optimization”, Advances in Neural Information Processing Systems 31, 2018
[2] S. Bubeck, Q. Jiang, Y. T. Lee, Y. Li, A. Sidford, “Complexity of highly parallel non-smooth convex optimization”, Advances in Neural Information Processing Systems 33, 2019
[3] J. Diakonikolas, C. Guzmán, “Lower bounds for parallel and randomized convex optimization”, J. Mach. Learn. Res., 21 (2020), Art no. 5 | MR
[4] S. Bubeck, “Convex optimization: algorithms and complexity”, Foundations and Trends in Machine Learning, 8:3-4 (2015), 231–357 | DOI | Zbl
[5] A. S. Nemirovskii, D. B. Yudin, Slozhnost zadach i effektivnost metodov optimizatsii, Nauka, M., 1979 | MR
[6] E. L. Gladin, K. E. Zainullina, “Metod ellipsoidov dlya zadach vypukloi stokhasticheskoi optimizatsii maloi razmernosti”, Kompyuternye issledovaniya i modelirovanie, 13:6 (2021), 1137–1147 | DOI
[7] O. Dekel, R. Gilad-Bachrach, O. Shamir, L. Xiao, “Optimal Distributed Online Prediction Using Mini-Batches”, J. Mach. Learn. Res., 13 (2012), 165–202 | MR | Zbl
[8] D. M. Dvinskikh i dr., “Uskorennyi i neuskorenyi stokhasticheskii gradientnyi spusk v modelnoi obschnosti”, Matem. zametki, 108:4 (2020), 515–528 | DOI | MR | Zbl
[9] P. M. Vaidya, “A new algorithm for minimizing convex functions over convex sets”, 30th Annual Symposium on Foundations of Computer Science, 1989, 338–343 | DOI
[10] Y. T. Lee, A. Sidford, “Path finding methods for linear programming: Solving linear programs in $O(\sqrt{\operatorname{rank}}\,)$ iterations and faster algorithms for maximum flow”, 55th Annual IEEE Symposium on Foundations of Computer Science – FOCS 2014, IEEE Computer Soc., Los Alamitos, CA, 2014, 424–433 | DOI | MR
[11] M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, Berlin, 2012 | DOI
[12] E. Gladin, A. Sadiev, A. Gasnikov, P. Dvurechensky, A. Beznosikov, M. Alkousa, “Solving smooth min-min and min-max problems by mixed oracle algorithms”, Mathematical Optimization Theory and Operations Research – Recent Trends, Commun. Comput. Inf. Sci., 1476, Springer, Cham, 2021 | MR
[13] J. A. Blackard, D. J. Dean, C.Ẇ. Anderson, Covertype binary dataset, http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
[14] E. L. Gladin, A. V. Gasnikov, E. S. Ermakova, Iskhodnyi kod eksperimentov, https://github.com/egorgladin/stochastic_vaidya | Zbl
[15] A. Agafonov A. al., An Accelerated Second-Order Method for Distributed Stochastic Optimization, 2021, arXiv: 2103.14392
[16] S. Shalev-Shwartz, O. Shamir, N. Srebro, K. Sridharan, Stochastic Convex Optimization, 2009 | Zbl