On the Divergence Sets of Fourier Series in Systems of Characters of Compact Abelian Groups
Matematičeskie zametki, Tome 112 (2022) no. 1, pp. 95-105
Voir la notice de l'article provenant de la source Math-Net.Ru
For a class of character systems of compact Abelian groups and for homogeneous Banach spaces $B$ satisfying some additional regularity conditions, we prove the following alternative: either the Fourier series of an arbitrary function in $B$ converges almost everywhere, or there exists a function in $B$ whose Fourier series diverges everywhere. We also prove that the classes of divergence sets of Fourier series in such function systems in the above-mentioned spaces are closed under at most countable unions and contain all sets of measure zero. As corollaries, we obtain some well-known and new results on everywhere divergent Fourier series in the trigonometric system as well as in the Walsh and Vilenkin systems and their rearrangements.
Keywords:
Fourier series, compact Abelian group, character, divergence everywhere.
Mots-clés : divergence set
Mots-clés : divergence set
@article{MZM_2022_112_1_a9,
author = {G. G. Oniani},
title = {On the {Divergence} {Sets} of {Fourier} {Series} in {Systems} of {Characters} of {Compact} {Abelian} {Groups}},
journal = {Matemati\v{c}eskie zametki},
pages = {95--105},
publisher = {mathdoc},
volume = {112},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a9/}
}
TY - JOUR AU - G. G. Oniani TI - On the Divergence Sets of Fourier Series in Systems of Characters of Compact Abelian Groups JO - Matematičeskie zametki PY - 2022 SP - 95 EP - 105 VL - 112 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a9/ LA - ru ID - MZM_2022_112_1_a9 ER -
G. G. Oniani. On the Divergence Sets of Fourier Series in Systems of Characters of Compact Abelian Groups. Matematičeskie zametki, Tome 112 (2022) no. 1, pp. 95-105. http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a9/