On Hereditary Superradical Formations of Full Characteristic
Matematičeskie zametki, Tome 112 (2022) no. 1, pp. 76-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

A formation $\mathfrak{F}$ of finite groups is said to be superradical if it satisfies the following requirements: $\bullet$ $\mathfrak{F}$ is a normally hereditary formation; $\bullet$ any group $G=AB$, where $A$ and $B$ are $\mathfrak{F}$-subnormal $\mathfrak{F}$-subgroups in $G$, belongs to $\mathfrak{F}$. The paper presents an infinite series of hereditary superradical formations of full characteristic that are not solvably saturated. This completes the negative answer to question 14.99 (b) in “Kourovka Notebook”.
Keywords: finite group, generalized subnormal subgroup, superradical formation, solvably saturated formation.
Mots-clés : formation
@article{MZM_2022_112_1_a6,
     author = {X. Yi and X. Wan and S. F. Kamornikov},
     title = {On {Hereditary} {Superradical} {Formations} of {Full} {Characteristic}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {76--82},
     publisher = {mathdoc},
     volume = {112},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a6/}
}
TY  - JOUR
AU  - X. Yi
AU  - X. Wan
AU  - S. F. Kamornikov
TI  - On Hereditary Superradical Formations of Full Characteristic
JO  - Matematičeskie zametki
PY  - 2022
SP  - 76
EP  - 82
VL  - 112
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a6/
LA  - ru
ID  - MZM_2022_112_1_a6
ER  - 
%0 Journal Article
%A X. Yi
%A X. Wan
%A S. F. Kamornikov
%T On Hereditary Superradical Formations of Full Characteristic
%J Matematičeskie zametki
%D 2022
%P 76-82
%V 112
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a6/
%G ru
%F MZM_2022_112_1_a6
X. Yi; X. Wan; S. F. Kamornikov. On Hereditary Superradical Formations of Full Characteristic. Matematičeskie zametki, Tome 112 (2022) no. 1, pp. 76-82. http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a6/

[1] R. Carter, T. Hawkes, “The $\mathfrak{F}$-normalizers of a finite soluble group”, J. Algebra, 5:2 (1967), 175–202 | DOI | MR | Zbl

[2] L. A. Shemetkov, “Stupenchatye formatsii grupp”, Matem. sb., 94 (136):4 (8) (1974), 628–648 | MR | Zbl

[3] S. F. Kamornikov, “Sverkhradikalnye formatsii”, Izv. Gomelskogo gos. un-ta im. F. Skoriny, 3 (84) (2014), 62–70

[4] Nereshennye voprosy teorii grupp. Kourovskaya tetrad, 17-e izd., In-t matem. SO RAN, Novosibirsk, 2010

[5] S. F. Kamornikov, V. N. Tyutyanov, “Ob odnom klasse nasledstvennykh nasyschennykh sverkhradikalnykh formatsii”, Sib. matem. zhurn., 55:1 (2014), 97–108 | MR | Zbl

[6] A. Ballester-Bolinches, S. F. Kamornikov, V. N. Tyutyanov, “On a problem of L.A. Shemetkov on superradical formations of finite groups”, J. Algebra, 403 (2014), 69–76 | DOI | MR | Zbl

[7] S. Ii, S. F. Kamornikov, “O nasledstvennykh sverkhradikalnykh formatsiyakh”, Sib. matem. zhurn., 57:2 (2016), 332–338 | DOI | MR | Zbl

[8] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989 | MR

[9] A. Ballester-Bolinches, S. F. Kamornikov, “A note on solubly saturated formations of finite groups”, J. Algebra Appl., 14:4 (2015), 1550047 | DOI | MR | Zbl

[10] S. F. Kamornikov, M. V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Belorusskaya nauka, Mn., 2003

[11] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992 | MR

[12] L. A. Shemetkov, Formatsii konechnykh grupp, Sovremennaya algebra, Nauka, M., 1978 | MR | Zbl

[13] S. F. Kamornikov, “Pronormalnye proektory konechnykh $\omega$-razreshimykh grupp”, Voprosy algebry, 2 (1986), 80–86 | Zbl

[14] P. Hall, “Theorems like Sylow's”, Proc. London Math. Soc., 6 (1956), 286–304 | DOI | MR | Zbl

[15] S. F. Kamornikov, “O dvukh zadachakh iz “Kourovskoi tetradi””, Matem. zametki, 55:6 (1994), 59–63 | MR | Zbl