Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_1_a2, author = {E. S. Baranovskii}, title = {Feedback {Optimal} {Control} {Problem} for a {Network} {Model} of {Viscous} {Fluid} {Flows}}, journal = {Matemati\v{c}eskie zametki}, pages = {31--47}, publisher = {mathdoc}, volume = {112}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a2/} }
E. S. Baranovskii. Feedback Optimal Control Problem for a Network Model of Viscous Fluid Flows. Matematičeskie zametki, Tome 112 (2022) no. 1, pp. 31-47. http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a2/
[1] H. Liu, Pipeline Engineering, Taylor Francis Group, Boca Raton, 2003
[2] M. V. Lure, Matematicheskoe modelirovanie protsessov truboprovodnogo transporta nefti, nefteproduktov i gaza, ITs RGU nefti i gaza im. I. M. Gubkina, M., 2012
[3] V. E. Seleznev, S. N. Pryalov, Computational Fluid Dynamics of Trunklines Systems: Methods for Constructing Flow Models in Branched Trunklines and Open Channels, URSS, 2014
[4] G. Panasenko, “Asymptotic expansion of the solution of Navier–Stokes equation in a tube structure”, C. R. Acad. Sci. Paris. Ser. IIB, 326:12 (1998), 867–872 | DOI | Zbl
[5] G. Panasenko, K. Pileckas, “Asymptotic analysis of the non-steady Navier–Stokes equations in a tube structure. II. General case”, Nonlinear Anal., 125 (2015), 582–607 | DOI | MR | Zbl
[6] G. Panasenko, K. Pileckas, B. Vernescu, “Steady state non-Newtonian flow in thin tube structure: equation on the graph”, Algebra i analiz, 33:2 (2021), 197–214 | MR
[7] M. A. Sagadeeva, G. A. Sviridyuk, “The nonautonomous linear Oskolkov model on a geometrical graph: the stability of solutions and the optimal control”, Semigroups of Operators –Theory and Applications, Springer Proc. Math. Stat., 113, Springer, Cham, 2015, 257–271 | MR | Zbl
[8] V. V. Provotorov, V. I. Ryazhskikh, Yu. A. Gnilitskaya, “Unique weak solvability of a nonlinear initial boundary value problem with distributed parameters in a netlike domain”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 13:3 (2017), 264–277 | DOI | MR
[9] V. V. Provotorov, E. N. Provotorova, “Optimal control of the linearized Navier–Stokes system in a netlike domain”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 13:4 (2017), 431–443 | DOI | MR
[10] E. S. Baranovskii, “A novel 3D model for non-Newtonian fluid flows in a pipe network”, Math. Methods Appl. Sci., 44:5 (2021), 3827–3839 | DOI | MR | Zbl
[11] E. S. Baranovskii, V. V. Provotorov, M. A. Artemov, A. P. Zhabko, “Non-isothermal creeping flows in a pipeline network: Existence results”, Symmetry, 13:7 (2021), Article ID 1300 | DOI
[12] A. V. Fursikov, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Universitetskaya seriya, 5, Nauchnaya kniga, Novosibirsk, 1999 | Zbl
[13] V. V. Ragulin, “K zadache o protekanii vyazkoi zhidkosti skvoz ogranichennuyu oblast pri zadannom perepade davleniya i napora”, Dinamika sploshnoi sredy, 27 (1976), 78–92 | MR
[14] D. Cioranescu, V. Girault, K. R. Rajagopal, Mechanics and Mathematics of Fluids of the Differential Type, Adv. Mech. Math., 35, Springer, Cham, 2016 | MR | Zbl
[15] V. G. Litvinov, Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982 | MR
[16] H. Beirão da Veiga, “On the regularity of flows with Ladyzhenskaya shear dependent viscosity and slip and non-slip boundary conditions”, Comm. Pure Appl. Math., 58:4 (2005), 552–577 | DOI | MR | Zbl
[17] E. S. Baranovskii, “Global solutions for a model of polymeric flows with wall slip”, Math. Methods Appl. Sci., 40:4 (2017), 5035–5043 | DOI | MR | Zbl
[18] J. Zhao, J. He, S. Migorski, S. Dudek, “An inverse problem for Bingham type fluids”, J. Comput. Appl. Math., 404 (2022), Article ID 113906 | MR
[19] F. E. Browder, “Nonlinear elliptic boundary value problems and the generalized topological degree”, Bull. Amer. Math. Soc., 76 (1970), 999–1005 | DOI | MR | Zbl
[20] C. John, D. Wachsmuth, “Optimal Dirichlet boundary control of stationary Navier–Stokes equations with state constraint”, Numer. Funct. Anal. Optim., 30:11-12 (2009), 1309–1338 | DOI | MR | Zbl
[21] A. V. Fursikov, “Obtekanie tela vyazkoi neszhimaemoi zhidkostyu: kraevye zadachi i minimizatsiya raboty zhidkosti”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 37, RUDN, M., 2010, 83–130 | MR
[22] M. V. Korobkov, K. Piletskas, V. V. Pukhnachev, R. Russo, “Zadacha protekaniya dlya uravnenii Nave–Stoksa”, UMN, 69:6 (420) (2014), 115–176 | DOI | MR | Zbl
[23] A. V. Fursikov, “Zadachi upravleniya i teoremy, kasayuschiesya odnoznachnoi razreshimosti smeshannoi kraevoi zadachi dlya trekhmernykh uravnenii Nave–Stoksa i Eilera”, Matem. sb., 115 (157):2 (6) (1981), 281–306 | MR | Zbl
[24] J. Nečas, Direct Methods in the Theory of Elliptic Equations, Springer, Heidelberg, 2012 | MR | Zbl
[25] A. D. Myshkis, “Obobscheniya teoremy o tochke pokoya dinamicheskoi sistemy vnutri zamknutoi traektorii”, Matem. sb., 34 (76):3 (1954), 525–540 | MR | Zbl
[26] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Springer, Dordrecht, 2006 | MR | Zbl
[27] G. Astarita, G. Marucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, New York, 1974
[28] E. S. Baranovskii, “Optimalnoe granichnoe upravlenie techeniem nelineino-vyazkoi zhidkosti”, Matem. sb., 211:4 (2020), 27–43 | DOI | MR | Zbl
[29] G. Dinca, J. Mawhin, Brouwer Degree – The Core of Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl., 95, Birkhäuser, Cham, 2021 | MR | Zbl
[30] I. V. Skrypnik, Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990 | MR
[31] E. S. Baranovskii, Topologicheskaya stepen mnogoznachnykh vozmuschenii $(S)_+$-otobrazhenii i ee prilozheniya, Dis. $\dots$ kand. fiz.-matem. nauk, Voronezhskii gos. un-t, Voronezh, 2010 | Zbl
[32] V. G. Zvyagin, E. S. Baranovskii, “Topologicheskaya stepen uplotnyayuschikh mnogoznachnykh vozmuschenii otobrazhenii klassa $(S)_+$ i ee prilozheniya”, SMFN, 35, RUDN, M., 2010, 60–77 | MR
[33] E. Zeidler, Nonlinear Functional Analysis and its Applications. III. Variational Methods and Optimization, Springer, New York, 1985 | MR | Zbl