Compactifications of Homeomorphism Groups of Linearly Ordered Compacta
Matematičeskie zametki, Tome 112 (2022) no. 1, pp. 118-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

Topological groups of transformations are studied (their structure and equivariant compactifications) on which the pointwise convergence topology is an admissible group topology. It is proved that the pointwise convergence topology is an admissible group topology and coincides with the topology of uniform convergence on the group of order-preserving homeomorphisms of a linearly ordered compactum. These groups are described for some lexicographically ordered products. The groups of homeomorphisms of a closed interval, of the “Double Arrow” Alexandroff space, of the lexicographically ordered square, and of the closed extended long ray are regarded as examples of the use of the general statements thus obtained.
Keywords: admissible group topology, totally bounded uniformity, Roelcke precompactness
Mots-clés : equivariant compactification.
@article{MZM_2022_112_1_a11,
     author = {B. V. Sorin},
     title = {Compactifications of {Homeomorphism} {Groups} of {Linearly} {Ordered} {Compacta}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {118--137},
     publisher = {mathdoc},
     volume = {112},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a11/}
}
TY  - JOUR
AU  - B. V. Sorin
TI  - Compactifications of Homeomorphism Groups of Linearly Ordered Compacta
JO  - Matematičeskie zametki
PY  - 2022
SP  - 118
EP  - 137
VL  - 112
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a11/
LA  - ru
ID  - MZM_2022_112_1_a11
ER  - 
%0 Journal Article
%A B. V. Sorin
%T Compactifications of Homeomorphism Groups of Linearly Ordered Compacta
%J Matematičeskie zametki
%D 2022
%P 118-137
%V 112
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a11/
%G ru
%F MZM_2022_112_1_a11
B. V. Sorin. Compactifications of Homeomorphism Groups of Linearly Ordered Compacta. Matematičeskie zametki, Tome 112 (2022) no. 1, pp. 118-137. http://geodesic.mathdoc.fr/item/MZM_2022_112_1_a11/

[1] N. Burbaki, Obschaya topologiya. Ispolzovanie veschestvennykh chisel v obschei topologii. Funktsionalnye prostranstva. Svodka rezultatov, Nauka, M., 1975 | MR

[2] A. V. Arhangel'ski\u{i}, M. G. Tkachenko, Topological Groups and Related Structures, Paris, Atlantic Press, 2008 | MR | Zbl

[3] M. Gheysens, The Homeomorphism Group of the First Uncountable Ordinal, 2020, arXiv: 1911.09088v2

[4] K. L. Kozlov, “Uniform equicontinuity and groups of homeomorphisms”, Topol. Appl., 311 (2022), 107959 | DOI | MR | Zbl

[5] R. Ellis, “A semigroup associated with a transformation group”, Trans. Amer. Math. Soc., 94 (1960), 272–281 | DOI | MR | Zbl

[6] C. Bessaga, A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warsaw, 1975 | MR | Zbl

[7] J. Kennedy, “Compactifying the space of homeomorphisms”, Colloq. Math., 56:1 (1988), 41–58 | DOI | MR | Zbl

[8] V. V. Uspenskij, “Compactifications of topological groups”, Proceedings of the Ninth Prague Topological Symposium, Prague, 2001, 331–346 | MR

[9] V. V. Uspenskij, “The Roelcke compactification of groups of homeomorphisms”, Topology Appl., 111 (2001), 195–205 | DOI | MR | Zbl

[10] V. V. Uspenskij, “On subgroups of minimal topological groups”, Topology Appl., 155 (2008), 1580–1606 | DOI | MR | Zbl

[11] D. Bartošová, A. Zucker, “Fra\"{i}ssé structures and a conjecture of Furstenberg”, Comment. Math. Univ. Carolin., 60:1 (2019), 1–24 | MR | Zbl

[12] V. G. Pestov, “On free actions, minimal flows, and a problem by Ellis”, Trans. Amer. Math. Soc., 350:10 (1998), 4149–4165 | DOI | MR | Zbl

[13] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR | Zbl

[14] W. Roelcke, S. Dierolf, Uniform Structures on Topological Groups and their Quotients, McGraw-Hill, New York, 1981 | MR | Zbl

[15] M. Megrelishvili, “Topological transformation groups: selected topics”, Open Problems in Topology II, Elsevier, 2007, 423–437

[16] M. G. Megrelishvili, “Ekvivariantnye popolneniya i bikompaktnye rasshireniya”, Soobscheniya AN Gruzinskoi SSR, 115:1 (1984), 21–24 | MR | Zbl

[17] R. Arens, “Topologies for homeomorphism groups”, Amer. J. Math., 68:4 (1946), 593–610 | DOI | MR | Zbl

[18] M. Megrelishvili, L. Polev, “Order and minimality of some topological groups”, Topology Appl., 201 (2016), 131–144 | DOI | MR | Zbl

[19] F. A. Z. Shirazi, F. Ebrahimifar, R. Yaghmaeian, H. Yahyaoghli, “Possible heights of Alexandroff square transformation groups”, Punjab Univ. J. Math. (Lahore), 52:6 (2020), 19–29 | MR

[20] D. Montgomery, L. Zippin, Topological Transformation Groups, Interscience Publ., New York, 1955 | MR | Zbl

[21] S. Lazaar, H. Sabri, “The topological group of autohomeomorphisms of homogeneous functionally Alexandroff spaces”, Topology Proc., 55 (2001), 243–264 | MR

[22] R. Kaufman, “Ordered sets and compact spaces”, Colloq. Math., 17 (1967), 35–39 | DOI | MR | Zbl

[23] V. V. Fedorchuk, “Nekotorye voprosy teorii uporyadochennykh prostranstv”, Sib. matem. zhurn., 10:1 (1969), 172–187 | MR | Zbl

[24] K. Sakai, S. Uehara, “A $Q$-manifold compactification of the homeomorphism group of a graph”, Bull. Polish Acad. Sci. Math., 45:3 (1997), 281–286 | MR | Zbl

[25] E. Glasner, M. Megrelishvili, “Some new algebras of functions on topological groups arising from $G$-spaces”, Fund. Math., 201 (2008), 1–51 | DOI | MR | Zbl