On Minimal Asymptotic Bases
Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 887-894.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb N$ denote the set of all nonnegative integers, and let $A\subseteq\mathbb N$. Let $h,n\in\mathbb N$, $h\ge 2$ and $r_h(A,n)=\#\{(a_1,\dots,a_h)\in A^h:a_1+\dotsb+a_h=n\}$. The set $A$ is called an asymptotic basis of order $h$ if $r_h(A,n)\ge 1$ for all sufficiently large integer $n$. An asymptotic basis $A$ of order $h$ is minimal if no proper subset of $A$ is an asymptotic basis of order $h$. Recently, Sun used 2-adic representations of integers to construct a new class of minimal asymptotic bases of order $h$. In this paper, we generalize the 2-adic result to the $g$-adic case.
Keywords: minimal asymptotic basis, $g$-adic representation.
Mots-clés : partition
@article{MZM_2022_111_6_a7,
     author = {C.-F. Sun and Zhi Cheng},
     title = {On {Minimal} {Asymptotic} {Bases}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {887--894},
     publisher = {mathdoc},
     volume = {111},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a7/}
}
TY  - JOUR
AU  - C.-F. Sun
AU  - Zhi Cheng
TI  - On Minimal Asymptotic Bases
JO  - Matematičeskie zametki
PY  - 2022
SP  - 887
EP  - 894
VL  - 111
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a7/
LA  - ru
ID  - MZM_2022_111_6_a7
ER  - 
%0 Journal Article
%A C.-F. Sun
%A Zhi Cheng
%T On Minimal Asymptotic Bases
%J Matematičeskie zametki
%D 2022
%P 887-894
%V 111
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a7/
%G ru
%F MZM_2022_111_6_a7
C.-F. Sun; Zhi Cheng. On Minimal Asymptotic Bases. Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 887-894. http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a7/

[1] A. Stöhr, “Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe. II”, J. Reine Angew. Math., 194 (1955), 111–140 | MR | Zbl

[2] E. Härtter, “Ein Beitrag zur Theorie der Minimalbasen”, J. Reine Angew. Math., 196 (1956), 170–204 | MR | Zbl

[3] M. B. Nathanson, “Minimal bases and maximal nonbases in additive number theory”, J. Number Theory, 6 (1974), 324–333 | DOI | MR | Zbl

[4] P. Erdős, M. B. Nathanson, “Sets of natural numbers with no minimal asymptotic bases”, Proc. Amer. Math. Soc., 70 (1978), 100–102 | DOI | MR | Zbl

[5] P. Erdős, M. B. Nathanson, “Minimal asymptotic bases for the natural numbers”, J. Number Theory, 12 (1980), 154–159 | DOI | MR | Zbl

[6] P. Erdős, M. B. Nathanson, “Minimal asymptotic bases with prescribed densities”, Illinois. J. Math., 32 (1988), 562–574 | MR | Zbl

[7] M. Ja$\acute{n}$czak, T. Schoen, “Dense minimal asymptotic bases of order two”, J. Number Theory, 130 (2010), 580–585 | DOI | MR

[8] X. D. Jia, “Minimal bases and $g$-adic representations of integers”, Number Theory, Springer, New York, 1996, 201–209 | MR | Zbl

[9] J. B. Lee, “A construction of minimal asymptotic bases”, Period. Math. Hungar., 26 (1993), 211–218 | DOI | MR | Zbl

[10] J. W. Li, J. W. Li, “On minimal asymptotic basis of order $4$”, J. Math. Res. Appl., 36 (2016), 651–658 | MR | Zbl

[11] D. R. Ling, M. Tang, “On minimal asymptotic $g$-adic bases”, Bull. Aust. Math. Soc., 92 (2015), 374–379 | DOI | MR | Zbl

[12] D. R. Ling, M. Tangt, “On minimal asymptotic bases of order three”, Colloq. Math., 151 (2018), 9–18 | DOI | MR | Zbl

[13] C. F. Sun, “On minimal asymptotic basis of order $g-1$”, Indag. Math. (N.S.), 30 (2019), 128–135 | DOI | MR | Zbl

[14] C. F. Sun, T. T. Tao, “On $g$-adic minimal asymptotic bases of order $h$”, Int. J. Number Theory, 15 (2019), 389–406 | DOI | MR | Zbl

[15] M. B. Nathanson, “Minimal bases and powers of $2$”, Acta Arith., 49 (1988), 525–532 | DOI | MR | Zbl

[16] X. D. Jia, M. B. Nathanson, “A simple construction of minimal asymptotic bases”, Acta Arith., 52 (1989), 95–101 | DOI | MR | Zbl

[17] F. J. Chen, Y. G. Chen, “On minimal asymptotic bases”, Eur. J. Combin., 32 (2011), 1329–1335 | DOI | MR | Zbl

[18] Y. G. Chen, M. Tang, “On a problem of Nathanson”, Acta. Arith., 185 (2018), 275–280 | DOI | MR | Zbl

[19] C. F. Sun, “On a problem of Nathanson on minimal asymptotic bases”, J. Number Theory, 218 (2021), 152–160 | DOI | MR | Zbl

[20] M. Tang, D. R. Ling, On asymptotic bases and minimal asymptotic bases, 2018, arXiv: 1810.10925v2