Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_6_a5, author = {P. Kumar}, title = {A {Note} on {Shen's} {Conjecture} on {Groups} with {Given} {Same-Order} {Type}}, journal = {Matemati\v{c}eskie zametki}, pages = {869--872}, publisher = {mathdoc}, volume = {111}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a5/} }
P. Kumar. A Note on Shen's Conjecture on Groups with Given Same-Order Type. Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 869-872. http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a5/
[1] R. Shen, X. Zou, W. Shi, “A characterization of $A_5$ by same-order type”, Monatsh. Math., 182:1 (2017), 127–142 | DOI | MR | Zbl
[2] L. J. Taghvasani, M. Zarrin, “A characterization of $A_5$ by its same-order type”, Monatsh. Math., 182:3 (2017), 731–736 | DOI | MR | Zbl
[3] R. Shen, “On groups with given same-order types”, Comm. Algebra, 40:6 (2012), 2140–2150 | DOI | MR | Zbl
[4] GAP – Groups, Algorithms, and Programming, Version 4.11.0, , 2020 www.gap-system.org
[5] L. Tóth, “On the number of cyclic subgroups of a finite Abelian group”, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 55 (103):4 (2012), 423–428 | MR | Zbl
[6] J. R. J. Groves, “Regular $p$-groups and words giving rise to commutative group operations”, Israel J. Math., 24:1 (1976), 73–77 | DOI | MR | Zbl
[7] Groups St. Andrews 2001 in Oxford, Vol. II, eds. C. M. Campbell, E. F. Robertson, G. C. Smith, Cambridge Univ. Press, Cambridge, 2013 | MR