A Note on Shen's Conjecture on Groups with Given Same-Order Type
Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 869-872.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group. Define an equivalence relation $\sim$ on $G$ as follows: for $x,y \in G$, $x \sim y$ if $x$ and $y$ have same order. The set of sizes of equivalence classes with respect to this relation is called the same-order type of $G$. Let $s_{k}(G)$ and $\pi_{e}(G)$ denote the number of elements of order $k$ and the set of element orders of the finite group $G$, respectively. Shen (2012) posed the following conjecture: let $G$ be a group of order $p^{l}$ with same-order type $\{1,m,n\}$, and let $|\pi_{e}(G)|>3$. If $p=2$ and $s_{2^{i}}(G)\neq0$ for $i\ge2$, then $s_{2^{i}}(G)=2^{l-2}$. If $p>2$, then there is no such group. In this paper, we give a partial answer to this conjecture. In fact, for $p=2$ with a counterexample, we give negative answer to the above conjecture, and for $p>2$, we find that above conjecture holds for finite $p$-groups of nilpotency class less than $p$.
Keywords: element order, same-order type.
Mots-clés : $p$-group
@article{MZM_2022_111_6_a5,
     author = {P. Kumar},
     title = {A {Note} on {Shen's} {Conjecture} on {Groups} with {Given} {Same-Order} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {869--872},
     publisher = {mathdoc},
     volume = {111},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a5/}
}
TY  - JOUR
AU  - P. Kumar
TI  - A Note on Shen's Conjecture on Groups with Given Same-Order Type
JO  - Matematičeskie zametki
PY  - 2022
SP  - 869
EP  - 872
VL  - 111
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a5/
LA  - ru
ID  - MZM_2022_111_6_a5
ER  - 
%0 Journal Article
%A P. Kumar
%T A Note on Shen's Conjecture on Groups with Given Same-Order Type
%J Matematičeskie zametki
%D 2022
%P 869-872
%V 111
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a5/
%G ru
%F MZM_2022_111_6_a5
P. Kumar. A Note on Shen's Conjecture on Groups with Given Same-Order Type. Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 869-872. http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a5/

[1] R. Shen, X. Zou, W. Shi, “A characterization of $A_5$ by same-order type”, Monatsh. Math., 182:1 (2017), 127–142 | DOI | MR | Zbl

[2] L. J. Taghvasani, M. Zarrin, “A characterization of $A_5$ by its same-order type”, Monatsh. Math., 182:3 (2017), 731–736 | DOI | MR | Zbl

[3] R. Shen, “On groups with given same-order types”, Comm. Algebra, 40:6 (2012), 2140–2150 | DOI | MR | Zbl

[4] GAP – Groups, Algorithms, and Programming, Version 4.11.0, , 2020 www.gap-system.org

[5] L. Tóth, “On the number of cyclic subgroups of a finite Abelian group”, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 55 (103):4 (2012), 423–428 | MR | Zbl

[6] J. R. J. Groves, “Regular $p$-groups and words giving rise to commutative group operations”, Israel J. Math., 24:1 (1976), 73–77 | DOI | MR | Zbl

[7] Groups St. Andrews 2001 in Oxford, Vol. II, eds. C. M. Campbell, E. F. Robertson, G. C. Smith, Cambridge Univ. Press, Cambridge, 2013 | MR