Many-Dimensional Morse--Smale Diffeomeophisms with a Dominant Saddle
Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 835-845.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article defines a class of Morse–Smale diffeomorphisms with a dominant saddle and provides necessary and sufficient conjugacy conditions for such diffeomorphisms. We show that the polar Morse–Smale diffeomorphisms of the $n$-dimensional sphere $\mathbb S^n$, $n\ge4$, whose nonwandering set consists of four points have dominant saddles. As a corollary, we obtain necessary and sufficient conjugacy conditions for such diffeomorphisms. We give examples of polar Morse–Smale diffeomorphisms $\mathbb S^n\to\mathbb S^n$ with such a nonwandering set.
Keywords: Morse–Smale diffeomorphism, dominant saddle.
Mots-clés : conjugacy
@article{MZM_2022_111_6_a2,
     author = {E. V. Zhuzhoma and V. S. Medvedev},
     title = {Many-Dimensional {Morse--Smale} {Diffeomeophisms} with a {Dominant} {Saddle}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {835--845},
     publisher = {mathdoc},
     volume = {111},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a2/}
}
TY  - JOUR
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
TI  - Many-Dimensional Morse--Smale Diffeomeophisms with a Dominant Saddle
JO  - Matematičeskie zametki
PY  - 2022
SP  - 835
EP  - 845
VL  - 111
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a2/
LA  - ru
ID  - MZM_2022_111_6_a2
ER  - 
%0 Journal Article
%A E. V. Zhuzhoma
%A V. S. Medvedev
%T Many-Dimensional Morse--Smale Diffeomeophisms with a Dominant Saddle
%J Matematičeskie zametki
%D 2022
%P 835-845
%V 111
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a2/
%G ru
%F MZM_2022_111_6_a2
E. V. Zhuzhoma; V. S. Medvedev. Many-Dimensional Morse--Smale Diffeomeophisms with a Dominant Saddle. Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 835-845. http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a2/

[1] A. A. Andronov, L. S. Pontryagin, “Grubye sistemy”, Dokl. AN SSSR, 14:5 (1937), 247–250

[2] M. M. Peixoto, “On structural stability”, Ann. of Math. (2), 69 (1959), 199–222 | DOI | MR | Zbl

[3] S. Smale, “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl

[4] D. V. Anosov, “Grubost geodezicheskikh potokov na kompaktnykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Dokl. AN SSSR, 145:4 (1962), 707–709 | MR | Zbl

[5] D. V. Anosov, “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Tr. MIAN SSSR, 90, 1967, 3–210 | MR | Zbl

[6] S. Smale, “Diffeomorphisms with many periodic points”, Differential and Combinatorial Topology, Princeton Univ. Press, Princeton, NJ, 1965, 63–80 | MR | Zbl

[7] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 | DOI | MR | Zbl

[8] S. Aranson, G. Belitsky, E. Zhuzhoma, Introduction to Qualitative Theory of Dynamical Systems on Closed Surfaces, Amer. Math. Soc., Providence, RI, 1996 | MR

[9] V. Grines, E. Zhuzhoma, Surface Laminations and Chaotic Dynamical Systems, M.–Izhevsk, 2021

[10] C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton, FL, 1999 | MR | Zbl

[11] V. Z. Grines, O. V.Pochinka, Vvedenie v topologicheskuyu klassifikatsiyu diffeomorfizmov na mnogoobraziyakh razmernosti dva i tri, Izd-vo «RKhD», M.–Izhevsk, 2011

[12] V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, O. V. Pochinka, “Klassifikatsiya sistem Morsa–Smeila i topologicheskaya struktura nesuschikh mnogoobrazii”, UMN, 74:1 (445) (2019), 41–116 | DOI | MR | Zbl

[13] E. V. Zhuzhoma, V. C. Medvedev, “Globalnaya dinamika sistem Morsa–Smeila”, Differentsialnye uravneniya i dinamicheskie sistemy, Trudy MIAN, 261, MAIK «Nauka/Interperiodika», M., 2008, 115–139 | MR | Zbl

[14] E. V. Zhuzhoma, V. C. Medvedev, “Nepreryvnye potoki Morsa–Smeila s tremya sostoyaniyami ravnovesiya”, Matem. sb., 207:5 (2016), 69–92 | DOI | MR | Zbl

[15] E. V. Zhuzhoma, V. C. Medvedev, “O nesuschikh mnogoobraziyakh mnogomernykh diffeomorfizmov Morsa–Smeila s dvumya sedlovymi periodicheskimi tochkami”, Matem. zametki, 109:3 (2021), 361–369 | DOI | MR | Zbl

[16] V. Z. Grines, E. V. Zhuzhoma, V. C. Medvedev, “O diffeomorfizmakh Morsa–Smeila s chetyrmya periodicheskimi tochkami na zamknutykh orientiruemykh mnogoobraziyakh”, Matem. zametki, 74:3 (2003), 369–386 | DOI | MR | Zbl

[17] E. V. Zhuzhoma, V. C. Medvedev, “Neobkhodimye i dostatochnye usloviya sopryazhennosti regulyarnykh gomeomorfizmov Smeila”, Matem. sb., 212:1 (2021), 63–77 | DOI | MR | Zbl

[18] V. Z. Grines, E. V. Zhuzhoma, V. C. Medvedev, O. V. Pochinka, “Globalnye attraktor i repeller diffeomorfizmov Morsa–Smeila”, Differentsialnye uravneniya i topologiya. II, Trudy MIAN, 271, MAIK «Nauka/Interperiodika», M., 2010, 111–133 | MR

[19] F. Laudenbah, V. Poénaru, “A note on 4-dimensional handlebodies”, Bull. Soc. Math. France, 100 (1972), 337–344 | DOI | MR

[20] G. Zeifert, V. Trelfall, Topologiya, Izd-vo «RKhD», 2001

[21] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR | Zbl