Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_6_a2, author = {E. V. Zhuzhoma and V. S. Medvedev}, title = {Many-Dimensional {Morse--Smale} {Diffeomeophisms} with a {Dominant} {Saddle}}, journal = {Matemati\v{c}eskie zametki}, pages = {835--845}, publisher = {mathdoc}, volume = {111}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a2/} }
TY - JOUR AU - E. V. Zhuzhoma AU - V. S. Medvedev TI - Many-Dimensional Morse--Smale Diffeomeophisms with a Dominant Saddle JO - Matematičeskie zametki PY - 2022 SP - 835 EP - 845 VL - 111 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a2/ LA - ru ID - MZM_2022_111_6_a2 ER -
E. V. Zhuzhoma; V. S. Medvedev. Many-Dimensional Morse--Smale Diffeomeophisms with a Dominant Saddle. Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 835-845. http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a2/
[1] A. A. Andronov, L. S. Pontryagin, “Grubye sistemy”, Dokl. AN SSSR, 14:5 (1937), 247–250
[2] M. M. Peixoto, “On structural stability”, Ann. of Math. (2), 69 (1959), 199–222 | DOI | MR | Zbl
[3] S. Smale, “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl
[4] D. V. Anosov, “Grubost geodezicheskikh potokov na kompaktnykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Dokl. AN SSSR, 145:4 (1962), 707–709 | MR | Zbl
[5] D. V. Anosov, “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Tr. MIAN SSSR, 90, 1967, 3–210 | MR | Zbl
[6] S. Smale, “Diffeomorphisms with many periodic points”, Differential and Combinatorial Topology, Princeton Univ. Press, Princeton, NJ, 1965, 63–80 | MR | Zbl
[7] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 | DOI | MR | Zbl
[8] S. Aranson, G. Belitsky, E. Zhuzhoma, Introduction to Qualitative Theory of Dynamical Systems on Closed Surfaces, Amer. Math. Soc., Providence, RI, 1996 | MR
[9] V. Grines, E. Zhuzhoma, Surface Laminations and Chaotic Dynamical Systems, M.–Izhevsk, 2021
[10] C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton, FL, 1999 | MR | Zbl
[11] V. Z. Grines, O. V.Pochinka, Vvedenie v topologicheskuyu klassifikatsiyu diffeomorfizmov na mnogoobraziyakh razmernosti dva i tri, Izd-vo «RKhD», M.–Izhevsk, 2011
[12] V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, O. V. Pochinka, “Klassifikatsiya sistem Morsa–Smeila i topologicheskaya struktura nesuschikh mnogoobrazii”, UMN, 74:1 (445) (2019), 41–116 | DOI | MR | Zbl
[13] E. V. Zhuzhoma, V. C. Medvedev, “Globalnaya dinamika sistem Morsa–Smeila”, Differentsialnye uravneniya i dinamicheskie sistemy, Trudy MIAN, 261, MAIK «Nauka/Interperiodika», M., 2008, 115–139 | MR | Zbl
[14] E. V. Zhuzhoma, V. C. Medvedev, “Nepreryvnye potoki Morsa–Smeila s tremya sostoyaniyami ravnovesiya”, Matem. sb., 207:5 (2016), 69–92 | DOI | MR | Zbl
[15] E. V. Zhuzhoma, V. C. Medvedev, “O nesuschikh mnogoobraziyakh mnogomernykh diffeomorfizmov Morsa–Smeila s dvumya sedlovymi periodicheskimi tochkami”, Matem. zametki, 109:3 (2021), 361–369 | DOI | MR | Zbl
[16] V. Z. Grines, E. V. Zhuzhoma, V. C. Medvedev, “O diffeomorfizmakh Morsa–Smeila s chetyrmya periodicheskimi tochkami na zamknutykh orientiruemykh mnogoobraziyakh”, Matem. zametki, 74:3 (2003), 369–386 | DOI | MR | Zbl
[17] E. V. Zhuzhoma, V. C. Medvedev, “Neobkhodimye i dostatochnye usloviya sopryazhennosti regulyarnykh gomeomorfizmov Smeila”, Matem. sb., 212:1 (2021), 63–77 | DOI | MR | Zbl
[18] V. Z. Grines, E. V. Zhuzhoma, V. C. Medvedev, O. V. Pochinka, “Globalnye attraktor i repeller diffeomorfizmov Morsa–Smeila”, Differentsialnye uravneniya i topologiya. II, Trudy MIAN, 271, MAIK «Nauka/Interperiodika», M., 2010, 111–133 | MR
[19] F. Laudenbah, V. Poénaru, “A note on 4-dimensional handlebodies”, Bull. Soc. Math. France, 100 (1972), 337–344 | DOI | MR
[20] G. Zeifert, V. Trelfall, Topologiya, Izd-vo «RKhD», 2001
[21] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR | Zbl