Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_6_a1, author = {D. A. Dolgov}, title = {On {Analogues} of {Heilbronn's} {Theorem}}, journal = {Matemati\v{c}eskie zametki}, pages = {819--834}, publisher = {mathdoc}, volume = {111}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a1/} }
D. A. Dolgov. On Analogues of Heilbronn's Theorem. Matematičeskie zametki, Tome 111 (2022) no. 6, pp. 819-834. http://geodesic.mathdoc.fr/item/MZM_2022_111_6_a1/
[1] H. Heilbronn, “On the average length of a class of finite continued fractions”, Number Theory and Analysis, Plenum, New York, 1969, 86–97 | MR
[2] G. Lochs, “Statistik der Teilnenner der zu den echten Brüchen gehörigen regelmäigen Kettenbrüche”, Monatsh. Math., 65:1 (1961), 27–52 | DOI | MR | Zbl
[3] J. Sorenson, The k-Ary GCD Algorithm, Technical Report CS-TR-90-979, University of Wisconsin, Madison, WI, 1990
[4] A. Thue, “Et par antydninger til en taltheoretisk metode”, Kra. Vidensk. Selsk. Forh, 7 (1902), 57–75
[5] J. Solymosi, On the Thue–Vinogradov Lemma, 2021, arXiv: 2006.12319
[6] L. Aubry, “Un théoréme d'arithmétique”, Mathesis (4), 3 (1913)
[7] I. M. Vinogradov, “On a general theorem concerning the distribution of the residues and non-residues of powers”, Trans. Amer. Math. Soc., 29 (1927), 209–217 | DOI | MR | Zbl
[8] B. Straustrup, Programmirovanie: printsipy i praktika ispolzovaniya C++, Vilyams, M., 2011
[9] D. A. Dolgov, “O kontinuantakh tsepnykh drobei s ratsionalnymi nepolnymi chastnymi”, Diskret. matem., 2022 (to appear)
[10] J. Sorenson, “Two fast GCD Algorithms”, J. Algorithms, 16 (1994), 110–144 | DOI | MR | Zbl
[11] D. A. Dolgov, “O tsepnykh drobyakh s ratsionalnymi nepolnymi chastnymi”, Chebyshevskii sb., 2022 (to appear)
[12] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR