Extremality of Gibbs Measures for the $HC$-Blume--Capel Model on the Cayley Tree
Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 762-777

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider translation-invariant Gibbs measures (TIGMs) for the $HC$-Blume–Capel model in case of “wands” with chemical potential with parameters $(\theta,\eta)$ on the Cayley tree. It is proved that, for $\eta\le\theta^{3}$, there is a unique TIGM and, for $\eta>\theta^{3}$, there are exactly three TIGMs in the case of “wands” with chemical potential for the model under consideration. In addition, the problem of the (non)extremality of these measures is studied.
Keywords: Cayley tree, $HC$-Blume–Capel model, Gibbs measure, translation-invariant measures, extremal measure.
Mots-clés : configuration
@article{MZM_2022_111_5_a9,
     author = {N. M. Khatamov},
     title = {Extremality of {Gibbs} {Measures} for the $HC${-Blume--Capel} {Model} on the {Cayley} {Tree}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {762--777},
     publisher = {mathdoc},
     volume = {111},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a9/}
}
TY  - JOUR
AU  - N. M. Khatamov
TI  - Extremality of Gibbs Measures for the $HC$-Blume--Capel Model on the Cayley Tree
JO  - Matematičeskie zametki
PY  - 2022
SP  - 762
EP  - 777
VL  - 111
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a9/
LA  - ru
ID  - MZM_2022_111_5_a9
ER  - 
%0 Journal Article
%A N. M. Khatamov
%T Extremality of Gibbs Measures for the $HC$-Blume--Capel Model on the Cayley Tree
%J Matematičeskie zametki
%D 2022
%P 762-777
%V 111
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a9/
%G ru
%F MZM_2022_111_5_a9
N. M. Khatamov. Extremality of Gibbs Measures for the $HC$-Blume--Capel Model on the Cayley Tree. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 762-777. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a9/