Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_5_a9, author = {N. M. Khatamov}, title = {Extremality of {Gibbs} {Measures} for the $HC${-Blume--Capel} {Model} on the {Cayley} {Tree}}, journal = {Matemati\v{c}eskie zametki}, pages = {762--777}, publisher = {mathdoc}, volume = {111}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a9/} }
N. M. Khatamov. Extremality of Gibbs Measures for the $HC$-Blume--Capel Model on the Cayley Tree. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 762-777. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a9/
[1] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR
[2] C. J. Preston, Gibbs States on Countable Sets, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl
[3] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | Zbl
[4] C. J. Preston, U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., New Jersey, 2013 | MR
[5] A. E. Mazel, Yu. M. Suhov, “Random surfaces with two-sided constraints: an application of the theory of dominant ground states”, J. Statist. Phys., 64:1-2 (1991), 111–134 | DOI | MR | Zbl
[6] Yu. M. Suhov, U. A. Rozikov, “A hard-core model on a Cayley tree: an example of a loss network”, Queueing Syst., 46:1-2 (2004), 197–212 | DOI | MR | Zbl
[7] J. B. Martin, “Reconstruction thresholds on regular trees”, Discrete Random Walks, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003, 191–204 | MR
[8] U. A. Rozikov, R. M. Khakimov, “Krainost translyatsionno-invariantnoi mery Gibbsa dlya $HC$-modeli na dereve Keli”, Byulleten In-ta matem., 2019, no. 2, 17–22
[9] R. M. Khakimov, “Edinstvennost slabo periodicheskoi gibbsovskoi mery dlya NS-modeli”, Matem. zametki, 94:5 (2013), 796–800 | DOI | MR | Zbl
[10] R. M. Khakimov, “Slabo periodicheskie mery Gibbsa dlya $HC$-modeli dlya normalnogo delitelya indeksa chetyre”, Ukr. matem. zhurn., 67:10 (2015), 1409–1422
[11] R. M. Khakimov, “Slabo periodicheskie mery Gibbsa dlya NS-modelei na dereve Keli”, Sib. matem. zhurn., 59:1 (2018), 185–196 | DOI | MR | Zbl
[12] G. Brightwell, P. Winkler, “Graph homomorphisms and phase transitions”, J. Combin. Theory Ser. B, 77:2 (1999), 221–262 | DOI | MR | Zbl
[13] J. B. Martin, U. A. Rozikov, Yu. M. Suhov, “A three state hard-core model on a Cayley tree”, J. Nonlinear Math. Phys., 12:3 (2005), 432–448 | DOI | MR | Zbl
[14] U. A. Rozikov, Sh. A. Shoyusupov, “Plodorodnye HC-modeli s tremya sostoyaniyami na dereve Keli”, TMF, 156:3 (2008), 412–424 | DOI | MR | Zbl
[15] R. M. Khakimov, “Translyatsionno-invariantnye mery Gibbsa dlya plodorodnykh modelei “hard core” s tremya sostoyaniyami na dereve Keli”, TMF, 183:3 (2015), 441–449 | DOI | MR | Zbl
[16] U. A. Rozikov, R. M. Khakimov, “Gibbs measures for the fertile three-state hard core models on a Cayley tree”, Queueing Syst., 81:1 (2015), 49–69 | DOI | MR | Zbl
[17] E. N. Cirillo, E. Olivieri, “Metastabilty and nucleation for the Blume-Capel model”, J. Statist. Phys., 83:3-4 (1996), 473–554 | DOI | MR | Zbl
[18] P. E. Theodorakis, N. J. Fytas, “Monte Carlo study of the triangular Blume–Capel model under bond randomness”, Phys. Rev. E, 86 (2012), 011140 | DOI
[19] O. Hryniv, R. Kotecky, “Surfase Tension and the Orustein–Zernike Behavior for the 2D Blume–Capel model”, J. Statist. Phys., 106:314 (2002), 431–476 | DOI | MR | Zbl
[20] N. M. Xatamov, R. M. Xakimov, “Translation-invariant Gibbs measures for the Blum–Kapel model on a Cayley tree”, Zhurn. matem. fiz., anal., geom., 15:2 (2019), 239–255 | DOI
[21] N. M. Khatamov, “Krainost translyatsionno-invariantnykh mer Gibbsa dlya modeli Blyuma–Kapelya v sluchae “zhezl” na dereve Keli”, Ukr. matem. zhurn., 72:4 (2020), 540–556 | Zbl
[22] N. M. Khatamov, “Struktury Khollideya v modeli Blyuma–Kapelya molekuly DNK”, TMF, 206:3 (2021), 439–447 | DOI | MR | Zbl
[23] H. Kesten, B. P. Stigum, “Additional limit theorem for indecomposable multi-dimensional Galton-Watson processes”, Ann. Math. Statist., 37 (1966), 1463–1481 | DOI | MR | Zbl
[24] F. Martinelli, A. Sinclair, D. Weitz, “Fast mixing for independent sets, coloring and other models on trees”, Random Structures Algoritms, 31:2 (2007), 134–172 | DOI | MR | Zbl
[25] C. Külske, U. A. Rozikov, “Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree”, Random Structures Algorithms, 50:4 (2017), 636–678 | DOI | MR | Zbl