Extremality of Gibbs Measures for the $HC$-Blume--Capel Model on the Cayley Tree
Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 762-777.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider translation-invariant Gibbs measures (TIGMs) for the $HC$-Blume–Capel model in case of “wands” with chemical potential with parameters $(\theta,\eta)$ on the Cayley tree. It is proved that, for $\eta\le\theta^{3}$, there is a unique TIGM and, for $\eta>\theta^{3}$, there are exactly three TIGMs in the case of “wands” with chemical potential for the model under consideration. In addition, the problem of the (non)extremality of these measures is studied.
Keywords: Cayley tree, $HC$-Blume–Capel model, Gibbs measure, translation-invariant measures, extremal measure.
Mots-clés : configuration
@article{MZM_2022_111_5_a9,
     author = {N. M. Khatamov},
     title = {Extremality of {Gibbs} {Measures} for the $HC${-Blume--Capel} {Model} on the {Cayley} {Tree}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {762--777},
     publisher = {mathdoc},
     volume = {111},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a9/}
}
TY  - JOUR
AU  - N. M. Khatamov
TI  - Extremality of Gibbs Measures for the $HC$-Blume--Capel Model on the Cayley Tree
JO  - Matematičeskie zametki
PY  - 2022
SP  - 762
EP  - 777
VL  - 111
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a9/
LA  - ru
ID  - MZM_2022_111_5_a9
ER  - 
%0 Journal Article
%A N. M. Khatamov
%T Extremality of Gibbs Measures for the $HC$-Blume--Capel Model on the Cayley Tree
%J Matematičeskie zametki
%D 2022
%P 762-777
%V 111
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a9/
%G ru
%F MZM_2022_111_5_a9
N. M. Khatamov. Extremality of Gibbs Measures for the $HC$-Blume--Capel Model on the Cayley Tree. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 762-777. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a9/

[1] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR

[2] C. J. Preston, Gibbs States on Countable Sets, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl

[3] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | Zbl

[4] C. J. Preston, U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., New Jersey, 2013 | MR

[5] A. E. Mazel, Yu. M. Suhov, “Random surfaces with two-sided constraints: an application of the theory of dominant ground states”, J. Statist. Phys., 64:1-2 (1991), 111–134 | DOI | MR | Zbl

[6] Yu. M. Suhov, U. A. Rozikov, “A hard-core model on a Cayley tree: an example of a loss network”, Queueing Syst., 46:1-2 (2004), 197–212 | DOI | MR | Zbl

[7] J. B. Martin, “Reconstruction thresholds on regular trees”, Discrete Random Walks, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003, 191–204 | MR

[8] U. A. Rozikov, R. M. Khakimov, “Krainost translyatsionno-invariantnoi mery Gibbsa dlya $HC$-modeli na dereve Keli”, Byulleten In-ta matem., 2019, no. 2, 17–22

[9] R. M. Khakimov, “Edinstvennost slabo periodicheskoi gibbsovskoi mery dlya NS-modeli”, Matem. zametki, 94:5 (2013), 796–800 | DOI | MR | Zbl

[10] R. M. Khakimov, “Slabo periodicheskie mery Gibbsa dlya $HC$-modeli dlya normalnogo delitelya indeksa chetyre”, Ukr. matem. zhurn., 67:10 (2015), 1409–1422

[11] R. M. Khakimov, “Slabo periodicheskie mery Gibbsa dlya NS-modelei na dereve Keli”, Sib. matem. zhurn., 59:1 (2018), 185–196 | DOI | MR | Zbl

[12] G. Brightwell, P. Winkler, “Graph homomorphisms and phase transitions”, J. Combin. Theory Ser. B, 77:2 (1999), 221–262 | DOI | MR | Zbl

[13] J. B. Martin, U. A. Rozikov, Yu. M. Suhov, “A three state hard-core model on a Cayley tree”, J. Nonlinear Math. Phys., 12:3 (2005), 432–448 | DOI | MR | Zbl

[14] U. A. Rozikov, Sh. A. Shoyusupov, “Plodorodnye HC-modeli s tremya sostoyaniyami na dereve Keli”, TMF, 156:3 (2008), 412–424 | DOI | MR | Zbl

[15] R. M. Khakimov, “Translyatsionno-invariantnye mery Gibbsa dlya plodorodnykh modelei “hard core” s tremya sostoyaniyami na dereve Keli”, TMF, 183:3 (2015), 441–449 | DOI | MR | Zbl

[16] U. A. Rozikov, R. M. Khakimov, “Gibbs measures for the fertile three-state hard core models on a Cayley tree”, Queueing Syst., 81:1 (2015), 49–69 | DOI | MR | Zbl

[17] E. N. Cirillo, E. Olivieri, “Metastabilty and nucleation for the Blume-Capel model”, J. Statist. Phys., 83:3-4 (1996), 473–554 | DOI | MR | Zbl

[18] P. E. Theodorakis, N. J. Fytas, “Monte Carlo study of the triangular Blume–Capel model under bond randomness”, Phys. Rev. E, 86 (2012), 011140 | DOI

[19] O. Hryniv, R. Kotecky, “Surfase Tension and the Orustein–Zernike Behavior for the 2D Blume–Capel model”, J. Statist. Phys., 106:314 (2002), 431–476 | DOI | MR | Zbl

[20] N. M. Xatamov, R. M. Xakimov, “Translation-invariant Gibbs measures for the Blum–Kapel model on a Cayley tree”, Zhurn. matem. fiz., anal., geom., 15:2 (2019), 239–255 | DOI

[21] N. M. Khatamov, “Krainost translyatsionno-invariantnykh mer Gibbsa dlya modeli Blyuma–Kapelya v sluchae “zhezl” na dereve Keli”, Ukr. matem. zhurn., 72:4 (2020), 540–556 | Zbl

[22] N. M. Khatamov, “Struktury Khollideya v modeli Blyuma–Kapelya molekuly DNK”, TMF, 206:3 (2021), 439–447 | DOI | MR | Zbl

[23] H. Kesten, B. P. Stigum, “Additional limit theorem for indecomposable multi-dimensional Galton-Watson processes”, Ann. Math. Statist., 37 (1966), 1463–1481 | DOI | MR | Zbl

[24] F. Martinelli, A. Sinclair, D. Weitz, “Fast mixing for independent sets, coloring and other models on trees”, Random Structures Algoritms, 31:2 (2007), 134–172 | DOI | MR | Zbl

[25] C. Külske, U. A. Rozikov, “Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree”, Random Structures Algorithms, 50:4 (2017), 636–678 | DOI | MR | Zbl