Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_5_a7, author = {G. Stoica}, title = {Winning {``Big''} in the {St.~Petersburg} {Game}}, journal = {Matemati\v{c}eskie zametki}, pages = {746--751}, publisher = {mathdoc}, volume = {111}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a7/} }
G. Stoica. Winning ``Big'' in the St.~Petersburg Game. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 746-751. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a7/
[1] W. Feller, “Note on the law of large numbers and “fair” games”, Ann. Math. Statistics, 16:3 (1945), 301–304 | DOI | MR | Zbl
[2] Y. S. Chow, H. Robbins, “On sums of independent random variables with infinite moments and “fair” games”, Proc. Nat. Acad. Sci. U.S.A., 47:3 (1961), 330–335 | DOI | MR | Zbl
[3] A. Adler, “Generalized one-sided laws of the iterated logarithm for random variables barely with or without finite mean”, J. Theoret. Prob., 3:4 (1990), 587–597 | DOI | MR | Zbl
[4] S. Csörgő, G. Simons, “A strong law of large numbers for trimmed sums, with applications to generalized St. Petersburg games”, Statist. Probab. Lett., 26:1 (1996), 65–73 | DOI | MR | Zbl
[5] I. Vardi, “The St. Petersburg game and continued fractions”, C. R. Acad. Sci. Paris Sér. I Math., 324:8 (1997), 913–918 | DOI | MR | Zbl
[6] A. Martin-Löf, “A limit theorem which clarifies the “Petersburg paradox””, J. Appl. Probab., 22:3 (1985), 634–643 | DOI | MR | Zbl
[7] Y. Hu, H. Nyrhinen, “Large deviations view points for heavy-tailed random walks”, J. Theoret. Prob., 17:3 (2004), 761–768 | DOI | MR | Zbl
[8] N. Gantert, “A note on logarithmic tail asymptotics and mixing”, Statist. Prob. Lett., 49:2 (2000), 113–118 | DOI | MR | Zbl
[9] G. Stoica, “Large gains in the St. Petersburg game”, C. R. Acad. Sci. Paris Sér. I Math., 346:9 (2008), 563–566 | DOI | MR | Zbl