Strengthened Wiegold Conjecture in the Theory of Nilpotent Lie Algebras
Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 738-745.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we strengthen the assertion of the Wiegold conjecture for nilpotent Lie algebras over an infinite field by proving that if there exists a subset of a nilpotent Lie algebra $\mathfrak{g}$ consisting of elements of breadth not exceeding $n$ and satisfying some additional conditions, then the dimension of the commutator subalgebra $\mathfrak{g'}$ of $\mathfrak{g}$ does not exceed $n(n+1)/2$.
Keywords: nilpotent Lie algebras, finite $p$-groups, Wiegold conjecture, iterated constructions.
@article{MZM_2022_111_5_a6,
     author = {A. A. Skutin},
     title = {Strengthened {Wiegold} {Conjecture} in the {Theory} of {Nilpotent} {Lie} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {738--745},
     publisher = {mathdoc},
     volume = {111},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a6/}
}
TY  - JOUR
AU  - A. A. Skutin
TI  - Strengthened Wiegold Conjecture in the Theory of Nilpotent Lie Algebras
JO  - Matematičeskie zametki
PY  - 2022
SP  - 738
EP  - 745
VL  - 111
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a6/
LA  - ru
ID  - MZM_2022_111_5_a6
ER  - 
%0 Journal Article
%A A. A. Skutin
%T Strengthened Wiegold Conjecture in the Theory of Nilpotent Lie Algebras
%J Matematičeskie zametki
%D 2022
%P 738-745
%V 111
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a6/
%G ru
%F MZM_2022_111_5_a6
A. A. Skutin. Strengthened Wiegold Conjecture in the Theory of Nilpotent Lie Algebras. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 738-745. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a6/

[1] J. Wiegold, “Groups with boundedly finite classes of conjugate elements”, Proc. Roy. Soc. London Ser. A, 238:1214 (1957), 389–401 | MR | Zbl

[2] J. Wiegold, “Commutator subgroups of finite p-groups”, J. Austral. Math. Soc., 10:3-4 (1969), 480–484 | DOI | MR | Zbl

[3] M. R. Vaughan-Lee, J. Wiegold, “Breadth, class and commutator subgroups of p-groups”, J. Algebra, 32:2 (1974), 268–277 | DOI | MR | Zbl

[4] I. M. Bride, “Second nilpotent BFC groups”, J. Austral. Math. Soc., 11:1 (1970), 9–18 | DOI | MR | Zbl

[5] M. R. Vaughan-Lee, “Metabelian BFC p-groups”, J. London Math. Soc., 2:4 (1972), 673–680 | DOI | MR

[6] M. R. Vaughan-Lee, “Breadth and commutator subgroups of p-groups”, J. Algebra, 32 (1974), 278–285 | DOI | MR | Zbl

[7] V. D. Mazurov, E. I. Khukhro, Unsolved Problems in Group Theory. The Kourovka Notebook, No. 18, 2017, arXiv: 1401.0300v10

[8] A. Skutin, “Proof of a conjecture of Wiegold”, J. Algebra, 526 (2019), 1–5 | DOI | MR | Zbl

[9] A. A. Skutin, “Dokazatelstvo gipotezy Uaigolda dlya nilpotentnykh algebr Li”, Matem. sb., 211:12 (2020), 143–148 | DOI | MR | Zbl