Strengthened Wiegold Conjecture in the Theory of Nilpotent Lie Algebras
Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 738-745 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, we strengthen the assertion of the Wiegold conjecture for nilpotent Lie algebras over an infinite field by proving that if there exists a subset of a nilpotent Lie algebra $\mathfrak{g}$ consisting of elements of breadth not exceeding $n$ and satisfying some additional conditions, then the dimension of the commutator subalgebra $\mathfrak{g'}$ of $\mathfrak{g}$ does not exceed $n(n+1)/2$.
Keywords: nilpotent Lie algebras, finite $p$-groups, Wiegold conjecture, iterated constructions.
@article{MZM_2022_111_5_a6,
     author = {A. A. Skutin},
     title = {Strengthened {Wiegold} {Conjecture} in the {Theory} of {Nilpotent} {Lie} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {738--745},
     year = {2022},
     volume = {111},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a6/}
}
TY  - JOUR
AU  - A. A. Skutin
TI  - Strengthened Wiegold Conjecture in the Theory of Nilpotent Lie Algebras
JO  - Matematičeskie zametki
PY  - 2022
SP  - 738
EP  - 745
VL  - 111
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a6/
LA  - ru
ID  - MZM_2022_111_5_a6
ER  - 
%0 Journal Article
%A A. A. Skutin
%T Strengthened Wiegold Conjecture in the Theory of Nilpotent Lie Algebras
%J Matematičeskie zametki
%D 2022
%P 738-745
%V 111
%N 5
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a6/
%G ru
%F MZM_2022_111_5_a6
A. A. Skutin. Strengthened Wiegold Conjecture in the Theory of Nilpotent Lie Algebras. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 738-745. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a6/

[1] J. Wiegold, “Groups with boundedly finite classes of conjugate elements”, Proc. Roy. Soc. London Ser. A, 238:1214 (1957), 389–401 | MR | Zbl

[2] J. Wiegold, “Commutator subgroups of finite p-groups”, J. Austral. Math. Soc., 10:3-4 (1969), 480–484 | DOI | MR | Zbl

[3] M. R. Vaughan-Lee, J. Wiegold, “Breadth, class and commutator subgroups of p-groups”, J. Algebra, 32:2 (1974), 268–277 | DOI | MR | Zbl

[4] I. M. Bride, “Second nilpotent BFC groups”, J. Austral. Math. Soc., 11:1 (1970), 9–18 | DOI | MR | Zbl

[5] M. R. Vaughan-Lee, “Metabelian BFC p-groups”, J. London Math. Soc., 2:4 (1972), 673–680 | DOI | MR

[6] M. R. Vaughan-Lee, “Breadth and commutator subgroups of p-groups”, J. Algebra, 32 (1974), 278–285 | DOI | MR | Zbl

[7] V. D. Mazurov, E. I. Khukhro, Unsolved Problems in Group Theory. The Kourovka Notebook, No. 18, 2017, arXiv: 1401.0300v10

[8] A. Skutin, “Proof of a conjecture of Wiegold”, J. Algebra, 526 (2019), 1–5 | DOI | MR | Zbl

[9] A. A. Skutin, “Dokazatelstvo gipotezy Uaigolda dlya nilpotentnykh algebr Li”, Matem. sb., 211:12 (2020), 143–148 | DOI | MR | Zbl