Strengthened Wiegold Conjecture in the Theory of Nilpotent Lie Algebras
Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 738-745

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we strengthen the assertion of the Wiegold conjecture for nilpotent Lie algebras over an infinite field by proving that if there exists a subset of a nilpotent Lie algebra $\mathfrak{g}$ consisting of elements of breadth not exceeding $n$ and satisfying some additional conditions, then the dimension of the commutator subalgebra $\mathfrak{g'}$ of $\mathfrak{g}$ does not exceed $n(n+1)/2$.
Keywords: nilpotent Lie algebras, finite $p$-groups, Wiegold conjecture, iterated constructions.
@article{MZM_2022_111_5_a6,
     author = {A. A. Skutin},
     title = {Strengthened {Wiegold} {Conjecture} in the {Theory} of {Nilpotent} {Lie} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {738--745},
     publisher = {mathdoc},
     volume = {111},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a6/}
}
TY  - JOUR
AU  - A. A. Skutin
TI  - Strengthened Wiegold Conjecture in the Theory of Nilpotent Lie Algebras
JO  - Matematičeskie zametki
PY  - 2022
SP  - 738
EP  - 745
VL  - 111
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a6/
LA  - ru
ID  - MZM_2022_111_5_a6
ER  - 
%0 Journal Article
%A A. A. Skutin
%T Strengthened Wiegold Conjecture in the Theory of Nilpotent Lie Algebras
%J Matematičeskie zametki
%D 2022
%P 738-745
%V 111
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a6/
%G ru
%F MZM_2022_111_5_a6
A. A. Skutin. Strengthened Wiegold Conjecture in the Theory of Nilpotent Lie Algebras. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 738-745. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a6/