$C^*$-Algebras of Transmission Problems and Elliptic Boundary Value Problems with Shift Operators
Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 692-716.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Fredholm solvability for a new class of nonlocal boundary value problems associated with group actions on smooth manifolds. Namely, we consider the case in which the group action is defined on an ambient manifold without boundary and does not preserve the manifold with boundary on which the problem is stated. In particular, the group action does not map the boundary into itself. The orbits of the boundary under the group action split the manifold into subdomains, and this decomposition, being combined with the $C^*$-algebra techniques, plays an important role in our approach to the analysis of the problem.
Keywords: manifold with boundary, nonlocal operator, ellipticity, Fredholm property, $C^*$-algebra, crossed product.
Mots-clés : group action
@article{MZM_2022_111_5_a3,
     author = {A. Baldare and V. E. Nazaikinskii and A. Yu. Savin and E. Schrohe},
     title = {$C^*${-Algebras} of {Transmission} {Problems} and {Elliptic} {Boundary} {Value} {Problems} with {Shift} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {692--716},
     publisher = {mathdoc},
     volume = {111},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a3/}
}
TY  - JOUR
AU  - A. Baldare
AU  - V. E. Nazaikinskii
AU  - A. Yu. Savin
AU  - E. Schrohe
TI  - $C^*$-Algebras of Transmission Problems and Elliptic Boundary Value Problems with Shift Operators
JO  - Matematičeskie zametki
PY  - 2022
SP  - 692
EP  - 716
VL  - 111
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a3/
LA  - ru
ID  - MZM_2022_111_5_a3
ER  - 
%0 Journal Article
%A A. Baldare
%A V. E. Nazaikinskii
%A A. Yu. Savin
%A E. Schrohe
%T $C^*$-Algebras of Transmission Problems and Elliptic Boundary Value Problems with Shift Operators
%J Matematičeskie zametki
%D 2022
%P 692-716
%V 111
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a3/
%G ru
%F MZM_2022_111_5_a3
A. Baldare; V. E. Nazaikinskii; A. Yu. Savin; E. Schrohe. $C^*$-Algebras of Transmission Problems and Elliptic Boundary Value Problems with Shift Operators. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 692-716. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a3/

[1] | MR | Zbl

[2] A. Antonevich, Linear Functional Equations. Operator Approach, Birkhäuser, Basel, 1996 | MR | Zbl

[3] A. Antonevich, A. Lebedev, Functional-Differential Equations. I. $C^*$-Theory, Longman, Harlow, 1994 | MR | Zbl

[4] A. Antonevich, M. Belousov, A. Lebedev, Functional Differential Equations. II. $C^*$-Applications. Parts 1, 2, Longman, Harlow, 1998 | MR

[5] | MR | MR

[6] A. V. Bitsadze, A. A. Samarskii, “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, Dokl. AN SSSR, 185:4 (1969), 739–740 | Zbl

[7] G. G. Onanov, A. L. Skubachevskii, “Differentsialnye uravneniya s otklonyayuschimisya argumentami v statsionarnykh zadachakh mekhaniki deformiruemogo tela”, Prikl. mekh., 15:5 (1979), 39–47 | MR | Zbl

[8] G. G. Onanov, E. L. Tsvetkov, “On the minimum of the energy functional with respect to functions with deviating argument in a stationary problem of elasticity theory”, Russ. J. Math. Phys., 3:4 (1995), 491–500 | MR | Zbl

[9] G. G. Onanov, A. L. Skubachevskii, “Nonlocal problems in the mechanics of three-layer shells”, Math. Model. Nat. Phenom., 12:6 (2017), 192–207 | DOI | MR | Zbl

[10] A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel–Boston–Berlin, 1997 | MR | Zbl

[11] | MR

[12] | MR

[13] | MR

[14] | MR

[15] S. Rempel, B.-W. Schulze, Index Theory of Elliptic Boundary Problems, Akademie-Verlag, Berlin, 1982 | MR | Zbl

[16] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, Elliptic Theory and Noncommutative Geometry, Birkhäuser, Basel, 2008 | MR | Zbl

[17] A. Savin, E. Schrohe, B. Sternin, “Uniformization and an index theorem for elliptic operators associated with diffeomorphisms of a manifold”, Russ. J. Math. Phys., 22:3 (2015), 410–420 | DOI | MR | Zbl

[18] A. Savin, E. Schrohe, “Analytic and algebraic indices of elliptic operators associated with discrete groups of quantized canonical transformations”, J. Funct. Anal., 278:5 (2020), Paper no. 108400, 45 pp | DOI | MR

[19] D. Perrot, “Local index theory for operators associated with Lie groupoid actions”, J. Topology Analysis, 2021, DOI:10.1142/S1793525321500059

[20] A. V. Boltachev, A. Yu. Savin, “Elliptic boundary value problems associated with isometric group actions”, J. Pseudo-Differ. Oper. Appl., 12:4 (2021), Paper no. 50, 34 pp | DOI | MR | Zbl

[21] L. Boutet de Monvel, “Boundary problems for pseudodifferential operators”, Acta Math., 126 (1971), 11–51 | DOI | MR | Zbl

[22] E. Schrohe, “A short introduction to Boutet de Monvel's calculus”, Approaches to Singular Analysis (Berlin, 1999), Oper. Theory Adv. Appl., 125, Birkhäuser, Basel, 2001, 85–116 | MR | Zbl

[23] G. Grubb, Functional Calculus of Pseudo-Differential Boundary Problems, Birkhäuser, Boston, 1986 | MR | Zbl

[24] Zh. Diksme, $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR

[25] G. K. Pedersen, $C^*$-Algebras and Their Automorphism Groups, London Mathematical Society Monographs, 14, Academic Press, London–New York, 1979 | MR | Zbl

[26] O. V. Sarafanov, “The spectrum of the ${C}^*$-algebra of pseudodifferential boundary value problems on a manifold with smooth edges.”, J. Math. Sci. (N.Y.), 120:2, 1195–1239 | MR | Zbl