Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_5_a3, author = {A. Baldare and V. E. Nazaikinskii and A. Yu. Savin and E. Schrohe}, title = {$C^*${-Algebras} of {Transmission} {Problems} and {Elliptic} {Boundary} {Value} {Problems} with {Shift} {Operators}}, journal = {Matemati\v{c}eskie zametki}, pages = {692--716}, publisher = {mathdoc}, volume = {111}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a3/} }
TY - JOUR AU - A. Baldare AU - V. E. Nazaikinskii AU - A. Yu. Savin AU - E. Schrohe TI - $C^*$-Algebras of Transmission Problems and Elliptic Boundary Value Problems with Shift Operators JO - Matematičeskie zametki PY - 2022 SP - 692 EP - 716 VL - 111 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a3/ LA - ru ID - MZM_2022_111_5_a3 ER -
%0 Journal Article %A A. Baldare %A V. E. Nazaikinskii %A A. Yu. Savin %A E. Schrohe %T $C^*$-Algebras of Transmission Problems and Elliptic Boundary Value Problems with Shift Operators %J Matematičeskie zametki %D 2022 %P 692-716 %V 111 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a3/ %G ru %F MZM_2022_111_5_a3
A. Baldare; V. E. Nazaikinskii; A. Yu. Savin; E. Schrohe. $C^*$-Algebras of Transmission Problems and Elliptic Boundary Value Problems with Shift Operators. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 692-716. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a3/
[2] A. Antonevich, Linear Functional Equations. Operator Approach, Birkhäuser, Basel, 1996 | MR | Zbl
[3] A. Antonevich, A. Lebedev, Functional-Differential Equations. I. $C^*$-Theory, Longman, Harlow, 1994 | MR | Zbl
[4] A. Antonevich, M. Belousov, A. Lebedev, Functional Differential Equations. II. $C^*$-Applications. Parts 1, 2, Longman, Harlow, 1998 | MR
[6] A. V. Bitsadze, A. A. Samarskii, “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, Dokl. AN SSSR, 185:4 (1969), 739–740 | Zbl
[7] G. G. Onanov, A. L. Skubachevskii, “Differentsialnye uravneniya s otklonyayuschimisya argumentami v statsionarnykh zadachakh mekhaniki deformiruemogo tela”, Prikl. mekh., 15:5 (1979), 39–47 | MR | Zbl
[8] G. G. Onanov, E. L. Tsvetkov, “On the minimum of the energy functional with respect to functions with deviating argument in a stationary problem of elasticity theory”, Russ. J. Math. Phys., 3:4 (1995), 491–500 | MR | Zbl
[9] G. G. Onanov, A. L. Skubachevskii, “Nonlocal problems in the mechanics of three-layer shells”, Math. Model. Nat. Phenom., 12:6 (2017), 192–207 | DOI | MR | Zbl
[10] A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel–Boston–Berlin, 1997 | MR | Zbl
[11] | MR
[12] | MR
[13] | MR
[14] | MR
[15] S. Rempel, B.-W. Schulze, Index Theory of Elliptic Boundary Problems, Akademie-Verlag, Berlin, 1982 | MR | Zbl
[16] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, Elliptic Theory and Noncommutative Geometry, Birkhäuser, Basel, 2008 | MR | Zbl
[17] A. Savin, E. Schrohe, B. Sternin, “Uniformization and an index theorem for elliptic operators associated with diffeomorphisms of a manifold”, Russ. J. Math. Phys., 22:3 (2015), 410–420 | DOI | MR | Zbl
[18] A. Savin, E. Schrohe, “Analytic and algebraic indices of elliptic operators associated with discrete groups of quantized canonical transformations”, J. Funct. Anal., 278:5 (2020), Paper no. 108400, 45 pp | DOI | MR
[19] D. Perrot, “Local index theory for operators associated with Lie groupoid actions”, J. Topology Analysis, 2021, DOI:10.1142/S1793525321500059
[20] A. V. Boltachev, A. Yu. Savin, “Elliptic boundary value problems associated with isometric group actions”, J. Pseudo-Differ. Oper. Appl., 12:4 (2021), Paper no. 50, 34 pp | DOI | MR | Zbl
[21] L. Boutet de Monvel, “Boundary problems for pseudodifferential operators”, Acta Math., 126 (1971), 11–51 | DOI | MR | Zbl
[22] E. Schrohe, “A short introduction to Boutet de Monvel's calculus”, Approaches to Singular Analysis (Berlin, 1999), Oper. Theory Adv. Appl., 125, Birkhäuser, Basel, 2001, 85–116 | MR | Zbl
[23] G. Grubb, Functional Calculus of Pseudo-Differential Boundary Problems, Birkhäuser, Boston, 1986 | MR | Zbl
[24] Zh. Diksme, $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR
[25] G. K. Pedersen, $C^*$-Algebras and Their Automorphism Groups, London Mathematical Society Monographs, 14, Academic Press, London–New York, 1979 | MR | Zbl
[26] O. V. Sarafanov, “The spectrum of the ${C}^*$-algebra of pseudodifferential boundary value problems on a manifold with smooth edges.”, J. Math. Sci. (N.Y.), 120:2, 1195–1239 | MR | Zbl