Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_5_a2, author = {B. Bagharzadeh Tavasani and A. H. Refahi Sheikhani and H. Aminikhah}, title = {Numerical {Simulation} of the {Variable} {Order} {Fractional} {Integro-Differential} {Equation} via {Chebyshev} {Polynomials}}, journal = {Matemati\v{c}eskie zametki}, pages = {676--691}, publisher = {mathdoc}, volume = {111}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a2/} }
TY - JOUR AU - B. Bagharzadeh Tavasani AU - A. H. Refahi Sheikhani AU - H. Aminikhah TI - Numerical Simulation of the Variable Order Fractional Integro-Differential Equation via Chebyshev Polynomials JO - Matematičeskie zametki PY - 2022 SP - 676 EP - 691 VL - 111 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a2/ LA - ru ID - MZM_2022_111_5_a2 ER -
%0 Journal Article %A B. Bagharzadeh Tavasani %A A. H. Refahi Sheikhani %A H. Aminikhah %T Numerical Simulation of the Variable Order Fractional Integro-Differential Equation via Chebyshev Polynomials %J Matematičeskie zametki %D 2022 %P 676-691 %V 111 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a2/ %G ru %F MZM_2022_111_5_a2
B. Bagharzadeh Tavasani; A. H. Refahi Sheikhani; H. Aminikhah. Numerical Simulation of the Variable Order Fractional Integro-Differential Equation via Chebyshev Polynomials. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 676-691. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a2/
[1] Z. M. Odibat, “A study on the convergence of variational iteration method”, Math. Comput. Modelling, 51:9-10 (2010), 1181–1192 | DOI | MR | Zbl
[2] I. L. El-Kalla, “Convergence of the Adomian method applied to a class of nonlinear integral equations”, Appl. Math. Lett., 21:4 (2008), 372–376 | DOI | MR | Zbl
[3] M. M. Hosseini, “Adomian decomposition method for solution of nonlinear differential algebraic equations”, Appl. Math. Comput., 181:2 (2006), 1737–1744 | DOI | MR | Zbl
[4] S. Momani, Z. Odibat, V. S. Erturk, “Generalized differential transform method for solving a space and time fractional diffusion wave equation”, Phys. Lett. A, 370:5–6 (2007), 379–387 | DOI | MR | Zbl
[5] Y. Chen, M. Yi, C. Yu, “Error analysis for numerical solution of fractional differential equation by Haar wavelets method”, J. Comput. Sci., 3:5 (2012), 367–373 | DOI
[6] Y. Xu, V. Ertürk, “A finite difference technique for solving variable order fractional integro–differential equations”, Bull. Iranian Math. Soc., 40:3 (2014), 699–712 | MR | Zbl
[7] M. Zayernouri, G. E. Karniadakis, “Fractional spectral collocation methods for linear and nonlinear variable order FPDEs”, J. Comput. Phys., 293 (2015), 312–338 | DOI | MR | Zbl
[8] A. Mohebbi, M. Saffarian, “Implicit RBF Meshless method for the solution of two-dimensional variable order fractional cable equation”, J. Appl. Comput. Mech., 6:2 (2020), 235–247 | DOI
[9] H. Aminikhah, A. R. Sheikhani, H. Rezazadeh, “Exact solutions for the fractional differential equations by using the first integral method”, Nonlinear Engineering, 4:1 (2015), 15–22 | DOI
[10] M. Mashoof, A. R. Sheikhani, “Numerical solution of fractional control system by Haar-wavelet operational matrix method”, Int. J. Industrial Math., 8:3 (2016), 303–312
[11] M. Mashoof, A. R. Sheikhani, H. S. Najafi, “Stability analysis of distributed-order Hilfer–Prabhakar systems based on inertia theory”, Math. Notes, 104:1 (2018), 74–85 | DOI | MR | Zbl
[12] M. Mashoof, A. R. Sheikhani, H. S. Naja, “Stability analysis of distributed order Hilfer-Prabhakar differential equations”, Hacet. J. Math. Stat., 47:2 (2018), 299–315 | MR
[13] H. S. Najafi, S. A. Edalatpanah, A. R. Sheikhani, “Convergence analysis of modified iterative methods to solve linear systems”, Mediterr. J. Math., 11:3 (2014), 1019–1032 | DOI | MR | Zbl
[14] F. Shariffar, A. refahi Sheikhani, HS. Najafi, “An efficient chebyshev semi-iterative method for the solution of large systems”, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 80:4 (2018), 239–252 | MR | Zbl
[15] R. Garra, R. Gorenflo, F. Polito, Ž. Tomovski, “Hilfer-Prabhakar derivatives and some applications”, Appl. Math. Comput., 242 (2014), 576–589 | DOI | MR | Zbl
[16] T. R. Prabhakar, “A singular integral equation with a generalized Mittag Leffler function in the kernel”, Yokohama Math. J., 19 (1971), 7–15 | MR | Zbl
[17] M. Ichise, Y. Nagayanagi, T. Kojima, “An analog simulation of non-integer order transfer functions for analysis of electrode processes”, J. Electroanal. Chem. and Interfacial Electrochem., 33:2 (1971), 253–265 | DOI
[18] S. Khubalkar, A. Junghare, M. Aware, S. Das, “Unique fractional calculus engineering laboratory for learning and research”, Int. J. Electrical Engineering Education, 2018 | DOI
[19] J. Lai, S. Mao, J. Qiu, H. Fan, Q. Zhang, Z. Hu, J. Chen, “Investigation progress and applications of fractional derivative model in geotechnical engineering”, Math. Problems in Eng., 2016 (2016), Art. ID 9183296 | DOI
[20] M. D. Ortigueira, Fractional calculus for scientists and engineers, Lect. Notes Electr. Eng., 84, Springer, Dordrecht, 2011 | MR | Zbl
[21] F. Shariffar, R. Sheikhani, “A new two-stage iterative method for linear systems and its application in solving Poissons equation”, Int. J. Industrial Math., 11:4 (2019), 283–291
[22] A. H. R. Sheikhani, M. Mashoof, “A Collocation Method for Solving Fractional Order Linear System”, J. Indones. Math. Soc., 23:1 (2017), 27–42 | DOI | MR | Zbl
[23] A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier Sci., Amsterdam, 2006 | MR | Zbl
[24] R. Garra, R. Garrappa, “The Prabhakar or three parameters Mittag–Leffler function: theory and application”, Commun. Nonlinear Sci. Numer. Simul., 56 (2018), 314–329 | DOI | MR | Zbl
[25] R. Garrappa, “Grünwald–Letnikov operators for fractional relaxation in Havril̄iak-Negamimodels”, Commun. Nonlinear Sci. Numer. Simul., 38 (2016), 178–191 | DOI | MR | Zbl
[26] A. Giusti, I. Colombaro, R. Garra, R. Garrappa, F. Polito, M. Popolizio, F. Mainardi, “A practical guide to Prabhakar fractional calculus”, Fract. Calc. Appl. Anal., 23:1 (2020), 9–54 | DOI | MR | Zbl
[27] F. Mainardi, R. Garrappa, “On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics”, J. Comput. Phys., 293 (2015), 70–80 | DOI | MR | Zbl
[28] S. C. Pandey, “The Lorenzo–Hartley's function for fractional calculus and its applications pertaining to fractional order modelling of anomalous relaxation in dielectrics”, Comput. Appl. Math., 37:3 (2018), 2648–2666 | DOI | MR | Zbl
[29] R. K. Gupta, B. S. Shaktawat, D. Kumar, “Certain relation of generalized fractional calculus associated with the generalized Mittag-Leffler function”, J. Rajasthan Acad. Phys. Sci., 15:3 (2016), 117–126 | MR | Zbl
[30] A. Giusti, I. Colombaro, “Prabhakar-like fractional viscoelasticity”, Commun. Nonlinear Sci. Numer. Simul., 56 (2018), 138–143 | DOI | MR | Zbl
[31] R. Agarwal, S. O. N. A. L. Jain, R. P. Agarwal, “Analytic solution of generalized space-time fractional reaction-diffusion equation”, Fract. Differ. Calc., 7 (2017), 169–84 | DOI | MR
[32] E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, “On spectral methods for solving variable-order fractional integro-differential equations”, Comput. Appl. Math., 37:3 (2018), 3937–3950 | DOI | MR | Zbl
[33] M. A. Snyder, Chebyshev Methods in Numerical Approximation, Prentice-Hall, Englewood Cliffs, NJ, 1966 | MR | Zbl
[34] K. Sun, M. Zhu, “Numerical algorithm to solve a class of variable order fractional integral-differential equation based on Chebyshev polynomials”, Math. Probl. Eng., 2015 (2015), Art. ID 902161 | MR