On the Approximation of Solutions to the Heat Equation in the Lebesgue Class $L^2$ by More Regular Solutions
Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 778-794.

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for the approximability of all solutions of the heat equation in a bounded cylindrical domain that belong to the Lebesgue class by more regular (e.g., Sobolev) solutions of the same equation in a bounded cylindrical domain with larger base is obtained. Namely, the complement of the smaller base to the larger one must have no (nonempty connected) compact components. As an important corollary, we prove a theorem on the existence of a doubly orthogonal basis for the corresponding pair of Hilbert spaces.
Keywords: heat equation, approximation theorem.
@article{MZM_2022_111_5_a10,
     author = {A. A. Shlapunov},
     title = {On the {Approximation} of {Solutions} to the {Heat} {Equation} in the {Lebesgue} {Class} $L^2$ by {More} {Regular} {Solutions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {778--794},
     publisher = {mathdoc},
     volume = {111},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a10/}
}
TY  - JOUR
AU  - A. A. Shlapunov
TI  - On the Approximation of Solutions to the Heat Equation in the Lebesgue Class $L^2$ by More Regular Solutions
JO  - Matematičeskie zametki
PY  - 2022
SP  - 778
EP  - 794
VL  - 111
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a10/
LA  - ru
ID  - MZM_2022_111_5_a10
ER  - 
%0 Journal Article
%A A. A. Shlapunov
%T On the Approximation of Solutions to the Heat Equation in the Lebesgue Class $L^2$ by More Regular Solutions
%J Matematičeskie zametki
%D 2022
%P 778-794
%V 111
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a10/
%G ru
%F MZM_2022_111_5_a10
A. A. Shlapunov. On the Approximation of Solutions to the Heat Equation in the Lebesgue Class $L^2$ by More Regular Solutions. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 778-794. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a10/

[1] B. F. Jones, Jr., “An approximation theorem of Runge type for the heat equation”, Proc. Amer. Math. Soc., 52:1 (1975), 289–292 | DOI | MR | Zbl

[2] R. Diaz, “A Runge theorem for solutions of the heat equation”, Proc. Amer. Math. Soc., 80:4 (1980), 643–646 | DOI | MR | Zbl

[3] P. M. Gauthier, N. N. Tarkhanov, “Rational approximation and universality for a quasilinear parabolic equation”, J. Contemp. Math. Anal., 43 (2008), 353–364 | DOI | MR | Zbl

[4] C. Runge, “Zur Theorie der eindeutigen analytischen Funktionen”, Acta Math., 6 (1885), 229–244 | DOI | MR

[5] S. N. Mergelyan, “Garmonicheskaya approksimatsiya i priblizhennoe reshenie zadachi Koshi dlya uravneniya Laplasa”, UMN, 11:5 (71) (1956), 3–26 | MR | Zbl

[6] B. Malgrange, “Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution”, Ann. Inst. Fourier (Grenoble), 6 (1956), 271–355 | DOI | MR | Zbl

[7] N. Tarkhanov, The Analysis of Solutions of Elliptic Equations, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl

[8] A. G. Vitushkin, “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (138) (1967), 141–199 | MR | Zbl

[9] V. P. Khavin, “Approksimatsiya analiticheskimi funktsiyami v srednem”, Dokl. AN SSSR, 178:5 (1968), 1025–1028 | MR | Zbl

[10] L. I. Hedberg, “Nonlinear potential theory and Sobolev spaces”, Nonlinear Analysis, Function Spaces and Applications, Vol. 3, Teubner-Texte Math., 93, Teubner, Leipzig, 1986, 5–30 | MR | Zbl

[11] I. F. Krasichkov, “Sistemy funktsii so svoistvom dvoinoi ortogonalnosti”, Matem. zametki, 4:5 (1968), 551–556 | MR | Zbl

[12] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1974 | MR | Zbl

[13] N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie Verlag, Berlin, 1995 | MR | Zbl

[14] S. Bergman, The Kernel Function and Conformal Mapping, Amer. Math. Soc., Providence, RI, 1970 | MR | Zbl

[15] L. A. Aizenberg, A. M. Kytmanov, “O vozmozhnosti golomorfnogo prodolzheniya v oblast funktsii, zadannykh na svyaznom kuske ee granitsy”, Matem. sb., 182:4 (1991), 490–507 | MR | Zbl

[16] A. A. Shlapunov, N. Tarkhanov, “Bases with double orthogonality in the Cauchy problem for systems with injective symbols”, Proc. London. Math. Soc., 71:1 (1995), 1–54 | DOI | MR

[17] D .P Fedchenko, A. A. Shlapunov, “On the Cauchy problem for the elliptic complexes in spaces of distributions”, Complex Var. Elliptic Equ., 59:5 (2014), 651–679 | DOI | MR | Zbl

[18] K. O. Makhmudov, O. I. Makhmudov, N. N. Tarkhanov, “Nestandartnaya zadacha Koshi dlya uravneniya teploprovodnosti”, Matem. zametki, 102:2 (2017), 270–283 | DOI | MR | Zbl

[19] I. A. Kurilenko, A. A. Shlapunov, “On Carleman-type formulas for solutions to the heat equation”, Zhurn. SFU. Ser. Matem. i fiz., 12:4 (2019), 421–433 | DOI | Zbl

[20] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[21] O. V. Besov, V. P. Ilin, S. M. Nikolskii,, Integralnye predstavleniya i teoremy vlozheniya, Nauka, M., 1975 | MR

[22] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéare, Gauthier-Villars, Paris, 1969 | MR

[23] N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Grad. Stud. in Math., 96, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[24] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, NJ, 1964 | MR | Zbl

[25] L. I. Hedberg, T. H. Wolff, “Thin sets in nonlinear potential theory”, Ann. Inst. Fourier (Grenoble), 33:4 (1983), 161–187 | DOI | MR | Zbl

[26] A. G. Sveshnikov, A. N. Bogolyubov, V. V. Kravtsov, Lektsii po matematicheskoi fizike, Nauka, M., 2004 | MR

[27] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl

[28] F. Bowman, Introduction to Bessel Functions, Dover Publ., New York, 1958 | MR | Zbl

[29] A. A. Shlapunov, “Spectral decomposition of Green's integrals and existence of $W^{s,2}$-solutions of matrix factorizations of the Laplace operator in a ball”, Rend. Sem. Mat. Univ. Padova, 96 (1996), 237–256 | MR | Zbl