On the Approximation of Solutions to the Heat Equation in the Lebesgue Class $L^2$ by More Regular Solutions
Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 778-794

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for the approximability of all solutions of the heat equation in a bounded cylindrical domain that belong to the Lebesgue class by more regular (e.g., Sobolev) solutions of the same equation in a bounded cylindrical domain with larger base is obtained. Namely, the complement of the smaller base to the larger one must have no (nonempty connected) compact components. As an important corollary, we prove a theorem on the existence of a doubly orthogonal basis for the corresponding pair of Hilbert spaces.
Keywords: heat equation, approximation theorem.
@article{MZM_2022_111_5_a10,
     author = {A. A. Shlapunov},
     title = {On the {Approximation} of {Solutions} to the {Heat} {Equation} in the {Lebesgue} {Class} $L^2$ by {More} {Regular} {Solutions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {778--794},
     publisher = {mathdoc},
     volume = {111},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a10/}
}
TY  - JOUR
AU  - A. A. Shlapunov
TI  - On the Approximation of Solutions to the Heat Equation in the Lebesgue Class $L^2$ by More Regular Solutions
JO  - Matematičeskie zametki
PY  - 2022
SP  - 778
EP  - 794
VL  - 111
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a10/
LA  - ru
ID  - MZM_2022_111_5_a10
ER  - 
%0 Journal Article
%A A. A. Shlapunov
%T On the Approximation of Solutions to the Heat Equation in the Lebesgue Class $L^2$ by More Regular Solutions
%J Matematičeskie zametki
%D 2022
%P 778-794
%V 111
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a10/
%G ru
%F MZM_2022_111_5_a10
A. A. Shlapunov. On the Approximation of Solutions to the Heat Equation in the Lebesgue Class $L^2$ by More Regular Solutions. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 778-794. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a10/