Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_5_a10, author = {A. A. Shlapunov}, title = {On the {Approximation} of {Solutions} to the {Heat} {Equation} in the {Lebesgue} {Class} $L^2$ by {More} {Regular} {Solutions}}, journal = {Matemati\v{c}eskie zametki}, pages = {778--794}, publisher = {mathdoc}, volume = {111}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a10/} }
TY - JOUR AU - A. A. Shlapunov TI - On the Approximation of Solutions to the Heat Equation in the Lebesgue Class $L^2$ by More Regular Solutions JO - Matematičeskie zametki PY - 2022 SP - 778 EP - 794 VL - 111 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a10/ LA - ru ID - MZM_2022_111_5_a10 ER -
%0 Journal Article %A A. A. Shlapunov %T On the Approximation of Solutions to the Heat Equation in the Lebesgue Class $L^2$ by More Regular Solutions %J Matematičeskie zametki %D 2022 %P 778-794 %V 111 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a10/ %G ru %F MZM_2022_111_5_a10
A. A. Shlapunov. On the Approximation of Solutions to the Heat Equation in the Lebesgue Class $L^2$ by More Regular Solutions. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 778-794. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a10/
[1] B. F. Jones, Jr., “An approximation theorem of Runge type for the heat equation”, Proc. Amer. Math. Soc., 52:1 (1975), 289–292 | DOI | MR | Zbl
[2] R. Diaz, “A Runge theorem for solutions of the heat equation”, Proc. Amer. Math. Soc., 80:4 (1980), 643–646 | DOI | MR | Zbl
[3] P. M. Gauthier, N. N. Tarkhanov, “Rational approximation and universality for a quasilinear parabolic equation”, J. Contemp. Math. Anal., 43 (2008), 353–364 | DOI | MR | Zbl
[4] C. Runge, “Zur Theorie der eindeutigen analytischen Funktionen”, Acta Math., 6 (1885), 229–244 | DOI | MR
[5] S. N. Mergelyan, “Garmonicheskaya approksimatsiya i priblizhennoe reshenie zadachi Koshi dlya uravneniya Laplasa”, UMN, 11:5 (71) (1956), 3–26 | MR | Zbl
[6] B. Malgrange, “Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution”, Ann. Inst. Fourier (Grenoble), 6 (1956), 271–355 | DOI | MR | Zbl
[7] N. Tarkhanov, The Analysis of Solutions of Elliptic Equations, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl
[8] A. G. Vitushkin, “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (138) (1967), 141–199 | MR | Zbl
[9] V. P. Khavin, “Approksimatsiya analiticheskimi funktsiyami v srednem”, Dokl. AN SSSR, 178:5 (1968), 1025–1028 | MR | Zbl
[10] L. I. Hedberg, “Nonlinear potential theory and Sobolev spaces”, Nonlinear Analysis, Function Spaces and Applications, Vol. 3, Teubner-Texte Math., 93, Teubner, Leipzig, 1986, 5–30 | MR | Zbl
[11] I. F. Krasichkov, “Sistemy funktsii so svoistvom dvoinoi ortogonalnosti”, Matem. zametki, 4:5 (1968), 551–556 | MR | Zbl
[12] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1974 | MR | Zbl
[13] N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie Verlag, Berlin, 1995 | MR | Zbl
[14] S. Bergman, The Kernel Function and Conformal Mapping, Amer. Math. Soc., Providence, RI, 1970 | MR | Zbl
[15] L. A. Aizenberg, A. M. Kytmanov, “O vozmozhnosti golomorfnogo prodolzheniya v oblast funktsii, zadannykh na svyaznom kuske ee granitsy”, Matem. sb., 182:4 (1991), 490–507 | MR | Zbl
[16] A. A. Shlapunov, N. Tarkhanov, “Bases with double orthogonality in the Cauchy problem for systems with injective symbols”, Proc. London. Math. Soc., 71:1 (1995), 1–54 | DOI | MR
[17] D .P Fedchenko, A. A. Shlapunov, “On the Cauchy problem for the elliptic complexes in spaces of distributions”, Complex Var. Elliptic Equ., 59:5 (2014), 651–679 | DOI | MR | Zbl
[18] K. O. Makhmudov, O. I. Makhmudov, N. N. Tarkhanov, “Nestandartnaya zadacha Koshi dlya uravneniya teploprovodnosti”, Matem. zametki, 102:2 (2017), 270–283 | DOI | MR | Zbl
[19] I. A. Kurilenko, A. A. Shlapunov, “On Carleman-type formulas for solutions to the heat equation”, Zhurn. SFU. Ser. Matem. i fiz., 12:4 (2019), 421–433 | DOI | Zbl
[20] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl
[21] O. V. Besov, V. P. Ilin, S. M. Nikolskii,, Integralnye predstavleniya i teoremy vlozheniya, Nauka, M., 1975 | MR
[22] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéare, Gauthier-Villars, Paris, 1969 | MR
[23] N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Grad. Stud. in Math., 96, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl
[24] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, NJ, 1964 | MR | Zbl
[25] L. I. Hedberg, T. H. Wolff, “Thin sets in nonlinear potential theory”, Ann. Inst. Fourier (Grenoble), 33:4 (1983), 161–187 | DOI | MR | Zbl
[26] A. G. Sveshnikov, A. N. Bogolyubov, V. V. Kravtsov, Lektsii po matematicheskoi fizike, Nauka, M., 2004 | MR
[27] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl
[28] F. Bowman, Introduction to Bessel Functions, Dover Publ., New York, 1958 | MR | Zbl
[29] A. A. Shlapunov, “Spectral decomposition of Green's integrals and existence of $W^{s,2}$-solutions of matrix factorizations of the Laplace operator in a ball”, Rend. Sem. Mat. Univ. Padova, 96 (1996), 237–256 | MR | Zbl