Dynamical System of a Quadratic Stochastic Operator with Two Discontinuity Points
Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 663-675.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a population consisting of two species whose dynamics is determined by a quadratic stochastic operator with variable coefficients, which makes it a discontinuous operator at two points. This operator depends on three parameters. The set of these parameters is divided into seven subsets. For each subset of parameters, we find fixed points, periodic points, and the set of limit points of trajectories generated by the respective quadratic stochastic operators.
Keywords: dynamical systems, fixed point, periodic point, limit point.
@article{MZM_2022_111_5_a1,
     author = {Sh. B. Abdurakhimova and U. A. Rozikov},
     title = {Dynamical {System} of a {Quadratic} {Stochastic} {Operator} with {Two} {Discontinuity} {Points}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {663--675},
     publisher = {mathdoc},
     volume = {111},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a1/}
}
TY  - JOUR
AU  - Sh. B. Abdurakhimova
AU  - U. A. Rozikov
TI  - Dynamical System of a Quadratic Stochastic Operator with Two Discontinuity Points
JO  - Matematičeskie zametki
PY  - 2022
SP  - 663
EP  - 675
VL  - 111
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a1/
LA  - ru
ID  - MZM_2022_111_5_a1
ER  - 
%0 Journal Article
%A Sh. B. Abdurakhimova
%A U. A. Rozikov
%T Dynamical System of a Quadratic Stochastic Operator with Two Discontinuity Points
%J Matematičeskie zametki
%D 2022
%P 663-675
%V 111
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a1/
%G ru
%F MZM_2022_111_5_a1
Sh. B. Abdurakhimova; U. A. Rozikov. Dynamical System of a Quadratic Stochastic Operator with Two Discontinuity Points. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 663-675. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a1/

[1] S. N. Bernshtein, “Reshenie odnoi matematicheskoi problemy, svyazannoi s teoriei nasledovannosti”, Uch. zap. nauchn.-issl. kaf. Ukrainy. Otd. matem., 1 (1924), 83–115 | Zbl

[2] R. N. Ganikhodzhaev, F. M. Mukhamedov, U. A. Rozikov, “Quadratic stochastic operators and processes: results and open problems”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 14:2 (2011), 279–335 | DOI | MR | Zbl

[3] J. B. Usmonov, M. A. Kodirova, “A quadratic stochastic operator with variable coefficients”, Bull. Inst. Math., 3 (2020), 98–107

[4] A. J. M. Hardin, U. A. Rozikov, “A quasi-strictly non-Volterra quadratic stochastic operator”, Qual. Theory Dyn. Syst., 18:3 (2019), 1013–1029 | DOI | MR | Zbl

[5] H. Kesten, “Quadratic transformations: a model for population growth. I”, Adv. Appl. Probab, 2:1 (1970), 1–82 | DOI | MR | Zbl

[6] Yu. I. Lyubich, Mathematical Structures in Population Genetics, Springer, Berlin, 1992 | MR | Zbl

[7] F. Mukhamedov, N. Ganikhodjaev, Quantum Quadratic Operators and Processes, Lecture Notes in Math., 2133, Springer, Cham, 2015 | DOI | MR | Zbl

[8] F. M. Mukhamedov, U. U. Jamilov, A. T. Pirnapasov, “On Nonergodic Uniform Lotka–Volterra Operators”, Math. Notes, 105:2 (2019), 258–264 | DOI | MR | Zbl

[9] F. M. Mukhamedov, A. F. Embong, “On stable b-bistochastic quadratic stochastic operators and associated non-homogenous Markov chains”, Linear Multilinear Algebra, 66:1 (2018), 1–21 | DOI | MR | Zbl

[10] F. M. Mukhamedov, A. F. Embong, C. H. Pah, “Orthogonal preserving quadratic stochastic operators: infinite dimensional case”, J. Phys. Conf. Ser., 819 (2017), 012010 | MR

[11] F. M. Mukhamedov, O. Khakimov, A. F. Embong, “On surjective second order non-linear Markov operators and associated nonlinear integral equations”, Positivity, 22:5 (2018), 1445–1459 | DOI | MR | Zbl

[12] F. M. Mukhamedov, O. Khakimov, A. F. Embong, “Ergodicities of infinite dimensional nonlinear stochastic operators”, Qual. Theory Dyn. Syst., 19:3 (2020), Paper No. 79 | DOI | MR | Zbl

[13] F. M. Mukhamedov, O. Khakimov, A. F. Embong, “On omega limiting sets of infinite dimensional Volterra operators”, Nonlinearity, 33:11 (2020), 5875–5904 | DOI | MR | Zbl

[14] U. A. Rozikov, Population Dynamics: Algebraic and Probabilistic Approach, World Sci. Publ., Hackensack, NJ, 2020 | MR

[15] U. A. Rozikov, J. B. Usmonov, “Dynamics of a population with two equal dominated species”, Qual. Theory Dyn. Syst., 19:2 (2020), Paper No. 62 | MR | Zbl

[16] U. A. Rozikov, An Introduction to Mathematical Billiards, World Sci. Publ., Hackensack, NJ, 2019 | MR | Zbl

[17] U. A. Rozikov, N. B. Shamsiddinov, “On Non-Volterra quadratic stochastic operators generated by a product measure”, Stoch. Anal. Appl., 27:2 (2009), 353–362 | DOI | MR | Zbl

[18] U. A. Rozikov, U. U. Zhamilov, “$F$-kvadratichnye stokhasticheskie operatory”, Matem. zametki, 83:4 (2008), 606–612 | DOI | MR | Zbl

[19] U. U. Zhamilov, U. A. Rozikov, “O dinamike strogo nevolterrovskikh kvadratichnykh stokhasticheskikh operatorov na dvumernom simplekse”, Matem. sb., 200:9 (2009), 81–94 | DOI | MR | Zbl

[20] R. L. Devaney, An Introduction to Chaotic Dynamical System, Westview Press, Boulder, CO, 2003 | MR