Dynamical System of a Quadratic Stochastic Operator with Two Discontinuity Points
Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 663-675
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a population consisting of two species whose dynamics is determined by a quadratic stochastic operator with variable coefficients, which makes it a discontinuous operator at two points. This operator depends on three parameters. The set of these parameters is divided into seven subsets. For each subset of parameters, we find fixed points, periodic points, and the set of limit points of trajectories generated by the respective quadratic stochastic operators.
Keywords:
dynamical systems, fixed point, periodic point, limit point.
@article{MZM_2022_111_5_a1,
author = {Sh. B. Abdurakhimova and U. A. Rozikov},
title = {Dynamical {System} of a {Quadratic} {Stochastic} {Operator} with {Two} {Discontinuity} {Points}},
journal = {Matemati\v{c}eskie zametki},
pages = {663--675},
publisher = {mathdoc},
volume = {111},
number = {5},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a1/}
}
TY - JOUR AU - Sh. B. Abdurakhimova AU - U. A. Rozikov TI - Dynamical System of a Quadratic Stochastic Operator with Two Discontinuity Points JO - Matematičeskie zametki PY - 2022 SP - 663 EP - 675 VL - 111 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a1/ LA - ru ID - MZM_2022_111_5_a1 ER -
Sh. B. Abdurakhimova; U. A. Rozikov. Dynamical System of a Quadratic Stochastic Operator with Two Discontinuity Points. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 663-675. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a1/