Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_5_a1, author = {Sh. B. Abdurakhimova and U. A. Rozikov}, title = {Dynamical {System} of a {Quadratic} {Stochastic} {Operator} with {Two} {Discontinuity} {Points}}, journal = {Matemati\v{c}eskie zametki}, pages = {663--675}, publisher = {mathdoc}, volume = {111}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a1/} }
TY - JOUR AU - Sh. B. Abdurakhimova AU - U. A. Rozikov TI - Dynamical System of a Quadratic Stochastic Operator with Two Discontinuity Points JO - Matematičeskie zametki PY - 2022 SP - 663 EP - 675 VL - 111 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a1/ LA - ru ID - MZM_2022_111_5_a1 ER -
Sh. B. Abdurakhimova; U. A. Rozikov. Dynamical System of a Quadratic Stochastic Operator with Two Discontinuity Points. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 663-675. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a1/
[1] S. N. Bernshtein, “Reshenie odnoi matematicheskoi problemy, svyazannoi s teoriei nasledovannosti”, Uch. zap. nauchn.-issl. kaf. Ukrainy. Otd. matem., 1 (1924), 83–115 | Zbl
[2] R. N. Ganikhodzhaev, F. M. Mukhamedov, U. A. Rozikov, “Quadratic stochastic operators and processes: results and open problems”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 14:2 (2011), 279–335 | DOI | MR | Zbl
[3] J. B. Usmonov, M. A. Kodirova, “A quadratic stochastic operator with variable coefficients”, Bull. Inst. Math., 3 (2020), 98–107
[4] A. J. M. Hardin, U. A. Rozikov, “A quasi-strictly non-Volterra quadratic stochastic operator”, Qual. Theory Dyn. Syst., 18:3 (2019), 1013–1029 | DOI | MR | Zbl
[5] H. Kesten, “Quadratic transformations: a model for population growth. I”, Adv. Appl. Probab, 2:1 (1970), 1–82 | DOI | MR | Zbl
[6] Yu. I. Lyubich, Mathematical Structures in Population Genetics, Springer, Berlin, 1992 | MR | Zbl
[7] F. Mukhamedov, N. Ganikhodjaev, Quantum Quadratic Operators and Processes, Lecture Notes in Math., 2133, Springer, Cham, 2015 | DOI | MR | Zbl
[8] F. M. Mukhamedov, U. U. Jamilov, A. T. Pirnapasov, “On Nonergodic Uniform Lotka–Volterra Operators”, Math. Notes, 105:2 (2019), 258–264 | DOI | MR | Zbl
[9] F. M. Mukhamedov, A. F. Embong, “On stable b-bistochastic quadratic stochastic operators and associated non-homogenous Markov chains”, Linear Multilinear Algebra, 66:1 (2018), 1–21 | DOI | MR | Zbl
[10] F. M. Mukhamedov, A. F. Embong, C. H. Pah, “Orthogonal preserving quadratic stochastic operators: infinite dimensional case”, J. Phys. Conf. Ser., 819 (2017), 012010 | MR
[11] F. M. Mukhamedov, O. Khakimov, A. F. Embong, “On surjective second order non-linear Markov operators and associated nonlinear integral equations”, Positivity, 22:5 (2018), 1445–1459 | DOI | MR | Zbl
[12] F. M. Mukhamedov, O. Khakimov, A. F. Embong, “Ergodicities of infinite dimensional nonlinear stochastic operators”, Qual. Theory Dyn. Syst., 19:3 (2020), Paper No. 79 | DOI | MR | Zbl
[13] F. M. Mukhamedov, O. Khakimov, A. F. Embong, “On omega limiting sets of infinite dimensional Volterra operators”, Nonlinearity, 33:11 (2020), 5875–5904 | DOI | MR | Zbl
[14] U. A. Rozikov, Population Dynamics: Algebraic and Probabilistic Approach, World Sci. Publ., Hackensack, NJ, 2020 | MR
[15] U. A. Rozikov, J. B. Usmonov, “Dynamics of a population with two equal dominated species”, Qual. Theory Dyn. Syst., 19:2 (2020), Paper No. 62 | MR | Zbl
[16] U. A. Rozikov, An Introduction to Mathematical Billiards, World Sci. Publ., Hackensack, NJ, 2019 | MR | Zbl
[17] U. A. Rozikov, N. B. Shamsiddinov, “On Non-Volterra quadratic stochastic operators generated by a product measure”, Stoch. Anal. Appl., 27:2 (2009), 353–362 | DOI | MR | Zbl
[18] U. A. Rozikov, U. U. Zhamilov, “$F$-kvadratichnye stokhasticheskie operatory”, Matem. zametki, 83:4 (2008), 606–612 | DOI | MR | Zbl
[19] U. U. Zhamilov, U. A. Rozikov, “O dinamike strogo nevolterrovskikh kvadratichnykh stokhasticheskikh operatorov na dvumernom simplekse”, Matem. sb., 200:9 (2009), 81–94 | DOI | MR | Zbl
[20] R. L. Devaney, An Introduction to Chaotic Dynamical System, Westview Press, Boulder, CO, 2003 | MR