Separation of Coadjoint Orbits of Generalized Diamond Lie Groups
Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 643-662
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a type I connected and simply connected generalized diamond Lie group defined as the semidirect product of a $d$-dimensional Abelian Lie group $N$ with $(2n+1)$-dimensional Heisenberg Lie group $\mathbb{H}_{2n+1}$ for some $(n,d)\in(\mathbb{N}^*)^2$. Let $\mathfrak{g}^*/G$ denote the set of coadjoint orbits of $G$, where $\mathfrak{g}^*$ is the dual vector space of the Lie algebra $\mathfrak{g}$ of $G$. In this paper, we address the problem of separation of coadjoint orbits of $G$. We first specify the setting where $d=1$; we prove that the closed convex hull of coadjoint orbit $\mathcal{O}$ in $\mathfrak{g}^*$ does characterize $\mathcal{O}$. Whenever $d\ge2$, we provide a separating overgroup $G^+$ of $G$. More precisely, we extend the group $G$ to an overgroup denoted by $G^+$, containing $G$ as a subgroup, and we give an injective map $\varphi$ from $\mathfrak{g}^*$ into $(\mathfrak{g}^+)^*$, the dual vector space of Lie algebra $\mathfrak{g}^+$ of $G^+$ sending each $G$-orbit in $\mathfrak{g}^*$ to the $G^+$-orbit in $(\mathfrak{g}^+)^*$ in such a manner that the closed convex hull of $\varphi(\mathcal{O})$ does characterize $\mathcal{O}$, where $\mathcal{O}$ is a $G$-orbit in $\mathfrak{g}^*$.
Mots-clés :
coadjoint orbit
Keywords: closed convex hull separable, separating overgroup.
Keywords: closed convex hull separable, separating overgroup.
@article{MZM_2022_111_5_a0,
author = {L. Abdelmoula and Y. Bouaziz},
title = {Separation of {Coadjoint} {Orbits} of {Generalized} {Diamond} {Lie} {Groups}},
journal = {Matemati\v{c}eskie zametki},
pages = {643--662},
publisher = {mathdoc},
volume = {111},
number = {5},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a0/}
}
L. Abdelmoula; Y. Bouaziz. Separation of Coadjoint Orbits of Generalized Diamond Lie Groups. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 643-662. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a0/