Separation of Coadjoint Orbits of Generalized Diamond Lie Groups
Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 643-662.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a type I connected and simply connected generalized diamond Lie group defined as the semidirect product of a $d$-dimensional Abelian Lie group $N$ with $(2n+1)$-dimensional Heisenberg Lie group $\mathbb{H}_{2n+1}$ for some $(n,d)\in(\mathbb{N}^*)^2$. Let $\mathfrak{g}^*/G$ denote the set of coadjoint orbits of $G$, where $\mathfrak{g}^*$ is the dual vector space of the Lie algebra $\mathfrak{g}$ of $G$. In this paper, we address the problem of separation of coadjoint orbits of $G$. We first specify the setting where $d=1$; we prove that the closed convex hull of coadjoint orbit $\mathcal{O}$ in $\mathfrak{g}^*$ does characterize $\mathcal{O}$. Whenever $d\ge2$, we provide a separating overgroup $G^+$ of $G$. More precisely, we extend the group $G$ to an overgroup denoted by $G^+$, containing $G$ as a subgroup, and we give an injective map $\varphi$ from $\mathfrak{g}^*$ into $(\mathfrak{g}^+)^*$, the dual vector space of Lie algebra $\mathfrak{g}^+$ of $G^+$ sending each $G$-orbit in $\mathfrak{g}^*$ to the $G^+$-orbit in $(\mathfrak{g}^+)^*$ in such a manner that the closed convex hull of $\varphi(\mathcal{O})$ does characterize $\mathcal{O}$, where $\mathcal{O}$ is a $G$-orbit in $\mathfrak{g}^*$.
Mots-clés : coadjoint orbit
Keywords: closed convex hull separable, separating overgroup.
@article{MZM_2022_111_5_a0,
     author = {L. Abdelmoula and Y. Bouaziz},
     title = {Separation of {Coadjoint} {Orbits} of {Generalized} {Diamond} {Lie} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--662},
     publisher = {mathdoc},
     volume = {111},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a0/}
}
TY  - JOUR
AU  - L. Abdelmoula
AU  - Y. Bouaziz
TI  - Separation of Coadjoint Orbits of Generalized Diamond Lie Groups
JO  - Matematičeskie zametki
PY  - 2022
SP  - 643
EP  - 662
VL  - 111
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a0/
LA  - ru
ID  - MZM_2022_111_5_a0
ER  - 
%0 Journal Article
%A L. Abdelmoula
%A Y. Bouaziz
%T Separation of Coadjoint Orbits of Generalized Diamond Lie Groups
%J Matematičeskie zametki
%D 2022
%P 643-662
%V 111
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a0/
%G ru
%F MZM_2022_111_5_a0
L. Abdelmoula; Y. Bouaziz. Separation of Coadjoint Orbits of Generalized Diamond Lie Groups. Matematičeskie zametki, Tome 111 (2022) no. 5, pp. 643-662. http://geodesic.mathdoc.fr/item/MZM_2022_111_5_a0/

[1] D. Arnal, J. Ludwig, “La convexité de l'application moment d'un groupe de Lie”, J. Funct Anal., 105 (1992), 256–300 | DOI | MR | Zbl

[2] N. J. Wildberger, “The moment map for a Lie group representation”, Trans. Amer. Math. Soc., 330 (1992), 257–268 | DOI | MR | Zbl

[3] L. Abdelmoula, D. Arnal, M. Selmi, “Weak quadratic overgroups for a class of Lie groups”, Monatsh. Math., 171 (2013), 129–156 | DOI | MR | Zbl

[4] D. Arnal, M. Selmi, “Séparation des orbites coadjointes d'un groupe exponentiel par leur enveloppe convexe”, Bull. Sci. Math., 132 (2008), 54–69 | DOI | MR | Zbl

[5] L. Abdelmoula, “Moment sets and unitary dual for the diamond group”, Bull. Sci. Math., 134 (2010), 379–390 | DOI | MR | Zbl

[6] L. Abdelmoula, Y. Bouaziz, “Quadratic overgroups for diamond group”, Bull. Sci. Math., 138 (2014), 870–886 | DOI | MR | Zbl

[7] P. Bernat, N. Conze, M. Duflo, M. Lévy-Nahas, M. Raïs, P. Renouard, M. Vergne, Représentations des groupes de Lie résolubles, Monogr. Soc. Math. France, 4, Dunod, Paris, 1972 | MR

[8] D. Arnal, B. Currey, B. Dali, “Canonical coordinates for a class of solvable groups”, Monatsh. Math., 166 (2012), 19–55 | DOI | MR | Zbl