On the Dynamic Solution of the Volterra Integral Equation in the Form of Rational Spline Functions
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 581-591.

Voir la notice de l'article provenant de la source Math-Net.Ru

The approximate solution of the Volterra integral equation of the second kind is represented as collocation rational spline functions on successive closed intervals exhausting the entire solution domain. Estimates for the rate of convergence of approximate solutions to the exact solution in the uniform metric are also obtained via the modulus of continuity of the solution and its derivatives of first and second order.
Keywords: rational spline functions, collocation method.
Mots-clés : Volterra equation
@article{MZM_2022_111_4_a9,
     author = {A.-R. K. Ramazanov and A. K. Ramazanov and V. G. Magomedova},
     title = {On the {Dynamic} {Solution} of the {Volterra} {Integral} {Equation} in the {Form} of {Rational} {Spline} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {581--591},
     publisher = {mathdoc},
     volume = {111},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a9/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
AU  - A. K. Ramazanov
AU  - V. G. Magomedova
TI  - On the Dynamic Solution of the Volterra Integral Equation in the Form of Rational Spline Functions
JO  - Matematičeskie zametki
PY  - 2022
SP  - 581
EP  - 591
VL  - 111
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a9/
LA  - ru
ID  - MZM_2022_111_4_a9
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%A A. K. Ramazanov
%A V. G. Magomedova
%T On the Dynamic Solution of the Volterra Integral Equation in the Form of Rational Spline Functions
%J Matematičeskie zametki
%D 2022
%P 581-591
%V 111
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a9/
%G ru
%F MZM_2022_111_4_a9
A.-R. K. Ramazanov; A. K. Ramazanov; V. G. Magomedova. On the Dynamic Solution of the Volterra Integral Equation in the Form of Rational Spline Functions. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 581-591. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a9/

[1] Z. B. Tsalyuk, “Integralnye uravneniya Volterra”, Itogi nauki i tekhn. Ser. Mat. anal., 15, VINITI, M., 1977, 131–198 | MR | Zbl

[2] A. D. Polyanin, A. V. Manzhirov, Integralnye uravneniya, Spravochnik dlya vuzov, Yurait, M., 2017

[3] D. N. Sidorov, Metody analiza integralnykh dinamicheskikh modelei: teoriya i prilozheniya. Monografiya, Izd-vo IGU, Irkutsk, 2013

[4] Dzh. Alberg, E. Nilson, Dzh. Uolsh, Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl

[5] M. E. A. El Tom, “Numerical solution of Volterra integral equations by spline functions”, Nordisk Tidskr. Informationsbehandling (BIT), 13 (1972), 1–7 | DOI | MR

[6] A. N. Netravali, “Spline approximation to the solution of the Volterra integral equation of the second kind”, Math. Comput., 27:121 (1973), 99–106 | DOI | MR | Zbl

[7] S. B. Stechkin, Yu. N. Subbotin, Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR

[8] S. Nord, “Approximation properties of the spline fit”, Nordisk Tidskr. Informationsbehandling (BIT), 7 (1967), 132–144 | DOI | MR | Zbl

[9] A.-R. K. Ramazanov, V. G. Magomedova, “Bezuslovno skhodyaschiesya interpolyatsionnye ratsionalnye splainy”, Matem. zametki, 103:4 (2018), 592–603 | DOI | MR | Zbl

[10] A.-R. K. Ramazanov, V. G. Magomedova, “Splainy po trekhtochechnym ratsionalnym interpolyantam s avtonomnymi polyusami”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 16–28 | DOI

[11] V. G. Magomedova, A.-R. K. Ramazanov, “O priblizhennom reshenii differentsialnykh uravnenii s pomoschyu ratsionalnykh splain-funktsii”, Zh. vychisl. matem. i matem. fiz., 59:4 (2019), 579–586 | MR | Zbl