Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_4_a9, author = {A.-R. K. Ramazanov and A. K. Ramazanov and V. G. Magomedova}, title = {On the {Dynamic} {Solution} of the {Volterra} {Integral} {Equation} in the {Form} of {Rational} {Spline} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {581--591}, publisher = {mathdoc}, volume = {111}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a9/} }
TY - JOUR AU - A.-R. K. Ramazanov AU - A. K. Ramazanov AU - V. G. Magomedova TI - On the Dynamic Solution of the Volterra Integral Equation in the Form of Rational Spline Functions JO - Matematičeskie zametki PY - 2022 SP - 581 EP - 591 VL - 111 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a9/ LA - ru ID - MZM_2022_111_4_a9 ER -
%0 Journal Article %A A.-R. K. Ramazanov %A A. K. Ramazanov %A V. G. Magomedova %T On the Dynamic Solution of the Volterra Integral Equation in the Form of Rational Spline Functions %J Matematičeskie zametki %D 2022 %P 581-591 %V 111 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a9/ %G ru %F MZM_2022_111_4_a9
A.-R. K. Ramazanov; A. K. Ramazanov; V. G. Magomedova. On the Dynamic Solution of the Volterra Integral Equation in the Form of Rational Spline Functions. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 581-591. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a9/
[1] Z. B. Tsalyuk, “Integralnye uravneniya Volterra”, Itogi nauki i tekhn. Ser. Mat. anal., 15, VINITI, M., 1977, 131–198 | MR | Zbl
[2] A. D. Polyanin, A. V. Manzhirov, Integralnye uravneniya, Spravochnik dlya vuzov, Yurait, M., 2017
[3] D. N. Sidorov, Metody analiza integralnykh dinamicheskikh modelei: teoriya i prilozheniya. Monografiya, Izd-vo IGU, Irkutsk, 2013
[4] Dzh. Alberg, E. Nilson, Dzh. Uolsh, Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl
[5] M. E. A. El Tom, “Numerical solution of Volterra integral equations by spline functions”, Nordisk Tidskr. Informationsbehandling (BIT), 13 (1972), 1–7 | DOI | MR
[6] A. N. Netravali, “Spline approximation to the solution of the Volterra integral equation of the second kind”, Math. Comput., 27:121 (1973), 99–106 | DOI | MR | Zbl
[7] S. B. Stechkin, Yu. N. Subbotin, Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR
[8] S. Nord, “Approximation properties of the spline fit”, Nordisk Tidskr. Informationsbehandling (BIT), 7 (1967), 132–144 | DOI | MR | Zbl
[9] A.-R. K. Ramazanov, V. G. Magomedova, “Bezuslovno skhodyaschiesya interpolyatsionnye ratsionalnye splainy”, Matem. zametki, 103:4 (2018), 592–603 | DOI | MR | Zbl
[10] A.-R. K. Ramazanov, V. G. Magomedova, “Splainy po trekhtochechnym ratsionalnym interpolyantam s avtonomnymi polyusami”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 16–28 | DOI
[11] V. G. Magomedova, A.-R. K. Ramazanov, “O priblizhennom reshenii differentsialnykh uravnenii s pomoschyu ratsionalnykh splain-funktsii”, Zh. vychisl. matem. i matem. fiz., 59:4 (2019), 579–586 | MR | Zbl