On Joint Universality of the Riemann and Hurwitz Zeta-Functions
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 551-560.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2007, H. Mishou proved the universality theorem on the joint approximation of a pair of analytic functions by the shifts $(\zeta(s+i\tau),\zeta(s+i\tau,\alpha))$ of the Riemann zeta-function and the Hurwitz zeta-function with transcendental parameter $\alpha$. In this paper, we obtain a similar theorem on approximation by the shifts $(\zeta_{u_N}(s+ikh_1),\zeta_{u_N}(s+ikh_2,\alpha))$, $k\in\mathbb{N}\cup\{0\}$, $h_1,h_2>0$, where $\zeta_{u_N}(s)$ and $\zeta_{u_N}(s,\alpha)$ are absolutely convergent Dirichlet series, and, as $N\to\infty$, they tend in mean to $\zeta(s)$ and $\zeta(s,\alpha)$ respectively.
Keywords: Hurwitz zeta-function, Riemann zeta-function, weak convergence, universality.
@article{MZM_2022_111_4_a6,
     author = {A. Laurin\v{c}ikas},
     title = {On {Joint} {Universality} of the {Riemann} and {Hurwitz} {Zeta-Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {551--560},
     publisher = {mathdoc},
     volume = {111},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a6/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - On Joint Universality of the Riemann and Hurwitz Zeta-Functions
JO  - Matematičeskie zametki
PY  - 2022
SP  - 551
EP  - 560
VL  - 111
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a6/
LA  - ru
ID  - MZM_2022_111_4_a6
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T On Joint Universality of the Riemann and Hurwitz Zeta-Functions
%J Matematičeskie zametki
%D 2022
%P 551-560
%V 111
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a6/
%G ru
%F MZM_2022_111_4_a6
A. Laurinčikas. On Joint Universality of the Riemann and Hurwitz Zeta-Functions. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 551-560. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a6/

[1] S. M. Voronin, “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl

[2] K. Matsumoto, “A survey of the theory of universality for zeta and $L$-functions”, Number Theory: Plowing and Staring Through High Wave Forms, Ser. Number Theory and its Appl., 11, World Sci. Publ., Hackensack, NJ, 2015, 95–144 | MR | Zbl

[3] S. M. Voronin, “O funktsionalnoi nezavisimosti $L$-funktsii Dirikhle”, Acta Arith., 27 (1975), 493–503 | DOI | Zbl

[4] H. Mishou, “The joint value-distribution of the Riemann zeta function and Hurwitz zeta functions”, Lith. Math. J., 42 (2007), 32–47 | DOI | MR

[5] E. Buivydas, A. Laurinčikas, “A generalized joint discrete universality theorem for the Riemann and Hurwitz zeta-functions”, Lith. Math. J., 55 (2015), 193–206 | DOI | MR | Zbl

[6] R. Kačinskait{. e}, K. Matsumoto, “The mixed joint universality for a class of zeta-functions”, Math. Nachr., 288:16 (2015), 1900–1909 | DOI | MR

[7] Yu. V. Nesterenko, “Modulyarnye funktsii i voprosy transtsendentnosti”, Matem. sb., 187:9 (1996), 65–96 | DOI | MR | Zbl

[8] A. Laurinčikas, R. Garunkštis, The Lerch Zeta-Function, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[9] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes Math., 227, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl

[10] P. Bilingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[11] S. N. Mergelyan, “Ravnomernoe priblizhenie funktsii kompleksnogo peremennogo”, UMN, 7:2 (1952), 31–122 | MR | Zbl