On Joint Universality of the Riemann and Hurwitz Zeta-Functions
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 551-560

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2007, H. Mishou proved the universality theorem on the joint approximation of a pair of analytic functions by the shifts $(\zeta(s+i\tau),\zeta(s+i\tau,\alpha))$ of the Riemann zeta-function and the Hurwitz zeta-function with transcendental parameter $\alpha$. In this paper, we obtain a similar theorem on approximation by the shifts $(\zeta_{u_N}(s+ikh_1),\zeta_{u_N}(s+ikh_2,\alpha))$, $k\in\mathbb{N}\cup\{0\}$, $h_1,h_2>0$, where $\zeta_{u_N}(s)$ and $\zeta_{u_N}(s,\alpha)$ are absolutely convergent Dirichlet series, and, as $N\to\infty$, they tend in mean to $\zeta(s)$ and $\zeta(s,\alpha)$ respectively.
Keywords: Hurwitz zeta-function, Riemann zeta-function, weak convergence, universality.
@article{MZM_2022_111_4_a6,
     author = {A. Laurin\v{c}ikas},
     title = {On {Joint} {Universality} of the {Riemann} and {Hurwitz} {Zeta-Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {551--560},
     publisher = {mathdoc},
     volume = {111},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a6/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - On Joint Universality of the Riemann and Hurwitz Zeta-Functions
JO  - Matematičeskie zametki
PY  - 2022
SP  - 551
EP  - 560
VL  - 111
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a6/
LA  - ru
ID  - MZM_2022_111_4_a6
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T On Joint Universality of the Riemann and Hurwitz Zeta-Functions
%J Matematičeskie zametki
%D 2022
%P 551-560
%V 111
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a6/
%G ru
%F MZM_2022_111_4_a6
A. Laurinčikas. On Joint Universality of the Riemann and Hurwitz Zeta-Functions. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 551-560. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a6/