On Joint Universality of the Riemann and Hurwitz Zeta-Functions
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 551-560
Voir la notice de l'article provenant de la source Math-Net.Ru
In 2007, H. Mishou proved the universality theorem on the joint approximation of a pair of analytic functions by the shifts $(\zeta(s+i\tau),\zeta(s+i\tau,\alpha))$ of the Riemann zeta-function and the Hurwitz zeta-function with transcendental parameter $\alpha$. In this paper, we obtain a similar theorem on approximation by the shifts $(\zeta_{u_N}(s+ikh_1),\zeta_{u_N}(s+ikh_2,\alpha))$, $k\in\mathbb{N}\cup\{0\}$, $h_1,h_2>0$, where $\zeta_{u_N}(s)$ and $\zeta_{u_N}(s,\alpha)$ are absolutely convergent Dirichlet series, and, as $N\to\infty$, they tend in mean to $\zeta(s)$ and $\zeta(s,\alpha)$ respectively.
Keywords:
Hurwitz zeta-function, Riemann zeta-function, weak convergence, universality.
@article{MZM_2022_111_4_a6,
author = {A. Laurin\v{c}ikas},
title = {On {Joint} {Universality} of the {Riemann} and {Hurwitz} {Zeta-Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {551--560},
publisher = {mathdoc},
volume = {111},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a6/}
}
A. Laurinčikas. On Joint Universality of the Riemann and Hurwitz Zeta-Functions. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 551-560. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a6/