Integral Analogue of the First Initial-Boundary Value Problem for Second-Order Hyperbolic and Parabolic Equations
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 540-550.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the solvability of initial-boundary value problems for second-order hyperbolic and parabolic equations with a boundary condition that integrally connects the values of the solution on the lateral boundary with the values of the solution inside the domain. To study such problems, it was previously established that their solvability is ensured by the bijectivity of a certain Fredholm operator constructed from an integral condition. In this paper, we show that the condition of predecessors is not required for the existence and uniqueness of regular solutions (solutions with all derivatives generalized in the sense of Sobolev that are contained in the equation) of integral analogues of the first initial-boundary value problem for second-order hyperbolic and parabolic equations.
Keywords: second-order hyperbolic and parabolic equations, nonlocal problems, integral analogue of the first initial-boundary value problem, regular solutions, uniqueness.
Mots-clés : existence
@article{MZM_2022_111_4_a5,
     author = {A. I. Kozhanov and A. V. Dyuzheva},
     title = {Integral {Analogue} of the {First} {Initial-Boundary} {Value} {Problem} for {Second-Order} {Hyperbolic} and {Parabolic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {540--550},
     publisher = {mathdoc},
     volume = {111},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a5/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - A. V. Dyuzheva
TI  - Integral Analogue of the First Initial-Boundary Value Problem for Second-Order Hyperbolic and Parabolic Equations
JO  - Matematičeskie zametki
PY  - 2022
SP  - 540
EP  - 550
VL  - 111
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a5/
LA  - ru
ID  - MZM_2022_111_4_a5
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A A. V. Dyuzheva
%T Integral Analogue of the First Initial-Boundary Value Problem for Second-Order Hyperbolic and Parabolic Equations
%J Matematičeskie zametki
%D 2022
%P 540-550
%V 111
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a5/
%G ru
%F MZM_2022_111_4_a5
A. I. Kozhanov; A. V. Dyuzheva. Integral Analogue of the First Initial-Boundary Value Problem for Second-Order Hyperbolic and Parabolic Equations. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 540-550. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a5/

[1] J. R. Cannon, “The solution of heat equation subject to the specification of energy”, Quart. Appl. Math., 21:2 (1963), 155–160 | DOI | MR

[2] L. I. Kamynin, “Ob odnoi kraevoi zadache dlya parabolicheskogo uravneniya s integralnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 4:6 (1964), 1006–1024 | MR | Zbl

[3] N. I. Ionkin, “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differents. uravneniya, 13:2 (1977), 294–304 | MR | Zbl

[4] Z. Bazant, M Jirasek, “Nonlocal integral formulations of plasticity and damage: survey of progress”, J. Eng. Mech., 128:1 (2002), 1–20 | DOI

[5] L. I. Serbina, Nelokalnye matematicheskie modeli perenosa v vodonosnykh sistemakh, Nauka, M., 2007

[6] N. I. Ivanchov, “Kraevaya zadacha dlya parabolicheskogo uravneniya s integralnymi usloviyami”, Differents. uravneniya, 40:4 (2004), 547–564 | MR | Zbl

[7] A. I. Kozhanov, “O razreshimosti nekotorykh nelokalnykh i svyazannykh s nimi obratnykh zadach dlya parabolicheskikh uravnenii”, Matem. zametki YaGU, 18:2 (2011), 64–78 | Zbl

[8] A. I. Kozhanov, L. S. Pulkina, “Kraevye zadachi s integralnym granichnym usloviem dlya mnogomernykh giperbolicheskikh uravnenii”, Dokl. AN, 404:5 (2005), 589–592 | MR | Zbl

[9] A. I. Kozhanov, L. S. Pulkina, “O razreshimosti kraevykh zadach s nelokalnym granichnym usloviem integralnogo vida dlya mnogomernykh giperbolicheskikh uravnenii”, Differents. uravneniya, 42:9 (2006), 1166–1179 | MR | Zbl

[10] A. M. Abdrakhmanov, A. I. Kozhanov, “Zadacha s nelokalnymi granichnymi usloviyami dlya odnogo klassa uravnenii nechetnogo poryadka”, Izv. vuzov. Matem., 2007, no. 5, 3–12 | MR | Zbl

[11] A. M. Abdrakhmanov, “Razreshimost kraevoi zadachi s integralnym granichnym usloviem vtorogo roda dlya uravnenii nechetnogo poryadka”, Matem. zametki, 88:2 (2010), 163–172 | DOI | MR | Zbl

[12] N. S. Popov, “Razreshimost kraevoi zadachi dlya psevdogiperbolicheskogo uravneniya s nelokalnymi integralnymi usloviyami”, Differents. uravneniya, 51:3 (2015), 359–372 | MR | Zbl

[13] G. A. Lukina, Nelokalnye kraevye zadachi dlya nekotorykh klassov uravnenii nechetnogo poryadka, Dis. kand. fiz.-matem. nauk, Sev.-Vost. feder. un-t im. M. K. Ammosova, Yakutsk, 2011

[14] I. M. Danilyuk, A. O. Danilyuk, “Zadacha Neimana s integro-differentsialnym operatorom v kraevom uslovii”, Matem. zametki, 100:5 (2016), 701–709 | DOI | MR

[15] A. I. Kozhanov, A. V. Dyuzheva, “Vtoraya nachalno-kraevaya zadacha s integralnym smescheniem dlya giperbolicheskikh i parabolicheskikh uravnenii vtorogo poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 25:3 (2021), 423–434 | DOI

[16] C. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[17] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[18] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North–Holland, Amsterdam, 1978 | MR | Zbl

[19] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1993 | MR