Reverse Inequalities for Subelliptic Functions
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 525-539

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a wedge $\mathscr{K}(A)$ of solutions of the inequality $A(u) \ge 0$, where $A$ is a linear elliptic operator of order $2m$. For the elements of the wedge, we establish an interior estimate of the form $$ \|u;H_1^{2m}(\omega)\| \le C(\omega,\Omega)\|u;L(\Omega)\|, $$ where $\omega$ is a compact subset of $\Omega$, $H_1^{2 m}(\omega)$ is the Nikol'skii space, $L(\Omega)$ is the Lebesgue space of integrable functions, and the constant $C(\omega,\Omega)$ is independent of the function $u$. Similar estimates that hold up to the boundaries are proved for the functions from $\mathscr{K}(A)$ satisfying the boundary conditions.
Keywords: wedge, function, elliptic inequality, Banach space.
Mots-clés : norm
@article{MZM_2022_111_4_a4,
     author = {V. S. Klimov},
     title = {Reverse {Inequalities} for {Subelliptic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {525--539},
     publisher = {mathdoc},
     volume = {111},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a4/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Reverse Inequalities for Subelliptic Functions
JO  - Matematičeskie zametki
PY  - 2022
SP  - 525
EP  - 539
VL  - 111
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a4/
LA  - ru
ID  - MZM_2022_111_4_a4
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Reverse Inequalities for Subelliptic Functions
%J Matematičeskie zametki
%D 2022
%P 525-539
%V 111
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a4/
%G ru
%F MZM_2022_111_4_a4
V. S. Klimov. Reverse Inequalities for Subelliptic Functions. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 525-539. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a4/