Reverse Inequalities for Subelliptic Functions
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 525-539.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a wedge $\mathscr{K}(A)$ of solutions of the inequality $A(u) \ge 0$, where $A$ is a linear elliptic operator of order $2m$. For the elements of the wedge, we establish an interior estimate of the form $$ \|u;H_1^{2m}(\omega)\| \le C(\omega,\Omega)\|u;L(\Omega)\|, $$ where $\omega$ is a compact subset of $\Omega$, $H_1^{2 m}(\omega)$ is the Nikol'skii space, $L(\Omega)$ is the Lebesgue space of integrable functions, and the constant $C(\omega,\Omega)$ is independent of the function $u$. Similar estimates that hold up to the boundaries are proved for the functions from $\mathscr{K}(A)$ satisfying the boundary conditions.
Keywords: wedge, function, elliptic inequality, Banach space.
Mots-clés : norm
@article{MZM_2022_111_4_a4,
     author = {V. S. Klimov},
     title = {Reverse {Inequalities} for {Subelliptic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {525--539},
     publisher = {mathdoc},
     volume = {111},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a4/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Reverse Inequalities for Subelliptic Functions
JO  - Matematičeskie zametki
PY  - 2022
SP  - 525
EP  - 539
VL  - 111
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a4/
LA  - ru
ID  - MZM_2022_111_4_a4
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Reverse Inequalities for Subelliptic Functions
%J Matematičeskie zametki
%D 2022
%P 525-539
%V 111
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a4/
%G ru
%F MZM_2022_111_4_a4
V. S. Klimov. Reverse Inequalities for Subelliptic Functions. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 525-539. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a4/

[1] L. Hörmander, Notions of Convexity, Birkhäuser, Boston, 1994 | MR | Zbl

[2] V. A. Malyshev, “Nelineinye teoremy vlozheniya”, Algebra i analiz, 5:6 (1993), 1–38 | MR | Zbl

[3] V. S. Klimov, “Vnutrennie otsenki reshenii lineinykh ellipticheskikh neravenstv”, Izv. RAN. Ser. matem., 85:1 (2021), 98–117 | DOI | MR | Zbl

[4] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[5] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR | Zbl

[6] S. M. Nikolskii, “Kompaktnost i neravenstva dlya chastnykh proizvodnykh”, Issledovaniya po teorii funktsii i differentsialnym uravneniyam, Trudy MIAN, 248, Nauka, M., 2005, 194–203 | MR | Zbl

[7] L. Khermander, Analiz lineinykh differentsialrykh operatorov s chastnymi proizvodnymi. T. 1. Teoriya raspredelenii i analiz Fure, Mir, M., 1986 | MR | Zbl

[8] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 1. Obschaya teoriya, IL, M., 1962 | MR

[9] N. Burbaki, Integrirovanie. Mery, integrirovanie mer, Nauka, M., 1967 | MR

[10] Y. Roitberg, Elliptic Boundary Value Problems in the Spaces of Distrubutions, Kluwer Acad. Publ., Dordrecht, 1996 | MR

[11] V. A. Solonnikov, “O matritsakh Grina dlya ellipticheskikh kraevykh zadach. I”, Kraevye zadachi matematicheskoi fiziki. 6, Tr. MIAN SSSR, 110, 1970, 107–145 | MR | Zbl

[12] V. S. Klimov, “Netrivialnye resheniya kraevykh zadach dlya polulineinykh ellipticheskikh uravnenii”, Izv. AN SSSR. Ser. matem., 35:2 (1971), 428–439 | MR | Zbl

[13] V. S. Klimov, “O neotritsatelnykh resheniyakh kraevykh zadach dlya ellipticheskikh uravnenii vtorogo poryadka”, Sib. matem. zhurn., 12:4 (1971), 718–726 | MR | Zbl

[14] V. S. Klimov, A. N. Pavlenko, “Obratnye funktsionalnye neravenstva i ikh prilozheniya k nelineinym ellipticheskim kraevym zadacham”, Sib. matem. zhurn., 42:4 (2001), 781–795 | MR | Zbl

[15] E. Bekkenbakh, R. Bellman, Neravenstva, Mir, M., 1965 | MR | Zbl