Characterizations of $\sigma$-Solvable Finite Groups
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 506-518

Voir la notice de l'article provenant de la source Math-Net.Ru

All the groups considered in this paper are finite, and $G$ always denotes a finite group; $\sigma$ is a partition of the set $\mathbb{P}$ of all primes, i.e., $\sigma=\{\sigma_{i} \mid i \in I\}$, where $\mathbb{P}=\bigcup_{i \in I} \sigma_{i}$ and $\sigma_{i} \cap \sigma_{j}=\varnothing$ for all $i \ne j$. A group $G$ is said to be $\sigma$-primary if $G$ is a $\sigma_{i}$-group for some $i=i(G)$, and $\sigma$-solvable if every chief factor of $G$ is $\sigma$-primary. A set of subgroups $\mathcal{H}$ of a group $G$ is called a complete Hall $\sigma$-set of $G$ if every element $\ne 1$ of the set $\mathcal{H}$ is a Hall $\sigma_{i}$-subgroup $G$ for some $i$, and $\mathcal{H}$ contains exactly one Hall $\sigma_{i}$-subgroup of the group $G$ for all $i$ such that $\sigma_{i}\cap \pi(G)\ne \varnothing$. A subgroup $A$ of a group $G$ is said to be $K$-$\mathfrak{S}_{\sigma}$-subnormal in $G$ if $G$ contains a series of subgroups $A=A_{0} \le A_{1} \le\cdots\le A_{t}=G$ such that either $A_{i-1} \trianglelefteq A_{i}$ or the group $A_{i}/(A_{i-1})_{A_{i}}$ is $\sigma$-solvable for all $i=1,\dots,t$. We say that a subgroup $A$ of a group $G$ is weakly $K$-$\mathfrak{S}_{\sigma}$-subnormal in $G$ if $G$ contains $K$-$\mathfrak{S}_{\sigma}$-subnormal subgroups $S$ and $T$ such that $G=AT$ and $A \cap T \le S \le A$. In the present paper, we study conditions under which a group is $\sigma$-solvable. In particular, we prove that a group $G$ is $\sigma$-solvable if and only if at least one of the following two conditions is satisfied: (i) $G$ has a complete Hall $\sigma$-set $\mathcal H$ all of whose elements are weakly $K$-$\mathfrak{S}_{\sigma}$-subnormal in $G$; (ii) in every maximal chain of subgroups $\cdots M_{3} M_{2} M_{1} M_{0}=G$ of the groups $G$, at least one of the subgroups $M_{3}$$M_{2}$, or $M_{1}$ is weakly $K$-$\mathfrak{S}_{\sigma}$-subnormal in $G$.
Keywords: finite group, groups of equal order, $\sigma$-solvable group, $K$-$\mathfrak{S}_{\sigma}$-subnormal subgroup, weakly $K$-$\mathfrak{S}_{\sigma}$-subnormal subgroup.
@article{MZM_2022_111_4_a2,
     author = {W. Guo and Ch. Wan and I. N. Safonova and A. N. Skiba},
     title = {Characterizations of $\sigma${-Solvable} {Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {506--518},
     publisher = {mathdoc},
     volume = {111},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a2/}
}
TY  - JOUR
AU  - W. Guo
AU  - Ch. Wan
AU  - I. N. Safonova
AU  - A. N. Skiba
TI  - Characterizations of $\sigma$-Solvable Finite Groups
JO  - Matematičeskie zametki
PY  - 2022
SP  - 506
EP  - 518
VL  - 111
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a2/
LA  - ru
ID  - MZM_2022_111_4_a2
ER  - 
%0 Journal Article
%A W. Guo
%A Ch. Wan
%A I. N. Safonova
%A A. N. Skiba
%T Characterizations of $\sigma$-Solvable Finite Groups
%J Matematičeskie zametki
%D 2022
%P 506-518
%V 111
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a2/
%G ru
%F MZM_2022_111_4_a2
W. Guo; Ch. Wan; I. N. Safonova; A. N. Skiba. Characterizations of $\sigma$-Solvable Finite Groups. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 506-518. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a2/