Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_4_a2, author = {W. Guo and Ch. Wan and I. N. Safonova and A. N. Skiba}, title = {Characterizations of $\sigma${-Solvable} {Finite} {Groups}}, journal = {Matemati\v{c}eskie zametki}, pages = {506--518}, publisher = {mathdoc}, volume = {111}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a2/} }
TY - JOUR AU - W. Guo AU - Ch. Wan AU - I. N. Safonova AU - A. N. Skiba TI - Characterizations of $\sigma$-Solvable Finite Groups JO - Matematičeskie zametki PY - 2022 SP - 506 EP - 518 VL - 111 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a2/ LA - ru ID - MZM_2022_111_4_a2 ER -
W. Guo; Ch. Wan; I. N. Safonova; A. N. Skiba. Characterizations of $\sigma$-Solvable Finite Groups. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 506-518. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a2/
[1] O. H. Kegel, “Untergruppenverbande endlicher Gruppen, die den subnormalteilerverband echt enthalten”, Arch. Math., 30:3 (1978), 225–228 | DOI | MR | Zbl
[2] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006 | MR | Zbl
[3] A. N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl
[4] A. N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495 (2018), 114–129 | DOI | MR | Zbl
[5] W. Guo, A. N. Skiba, “On $\sigma$-supersoluble groups and one generalization of $CLT$-groups”, J. Algebra, 512 (2018), 92–108 | DOI | MR | Zbl
[6] A. N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, J. Algebra, 550 (2020), 69–85 | DOI | MR | Zbl
[7] C. Zhang, Z. Wu, W. Guo, “On weakly $\sigma$-permutable subgroups of finite groups”, Publ. Math. Debrecen, 91:3–4 (2017), 489–502 | DOI | MR | Zbl
[8] J. Huang, B. Hu, A. N. Skiba, “On weakly $s$-quasinormal subgroups of finite groups”, Publ. Math. Debrecen, 92:1–2 (2018), 201–216 | MR | Zbl
[9] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin, 2010 | MR | Zbl
[10] A. Ballester-Bolinches, J. C. Beidleman, H. Heineken, “Groups in which Sylow subgroups and subnormal subgroups permute”, Illinois J. Math., 47:1–2 (2003), 63–69 | MR | Zbl
[11] Y. Wang, “$c$-Normality of groups and its properties”, J. Algebra, 180 (1996), 954–965 | DOI | MR | Zbl
[12] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994 | MR | Zbl
[13] I. Zimmermann, “Submodular subgroups in finite group”, Math. Z., 202 (1989), 545–557 | DOI | MR | Zbl
[14] I. Zimmermann, “On a theorem of Deskins”, Proc. Amer. Math. Soc., 107:4 (1989), 895–899 | DOI | MR | Zbl
[15] V. A. Kovaleva, “A criterion for a finite group to be $\sigma$-soluble”, Comm. Algebra, 46:12 (2018), 5410–5415 | DOI | MR | Zbl
[16] K. A Al-Sharo, A. N. Skiba, “On finite groups with $\sigma$-subnormal Schmidt subgroups”, Comm. Algebra, 45 (2017), 4158–4165 | DOI | MR | Zbl
[17] J. C. Beidleman, A. N. Skiba, “On $\tau_{\sigma}$-quasinormal subgroups of finite groups”, J. Group Theory, 20:5 (2017), 955–969 | DOI | MR | Zbl
[18] J. Huang, B. Hu, X. Wu, “Finite groups all of whose subgroups are $\sigma$-subnormal or $\sigma$-abnormal”, Comm. Algebra, 45:1 (2017), 4542–4549 | DOI | MR | Zbl
[19] W. Guo, A. N. Skiba, “Finite groups whose $n$-maximal subgroups are $\sigma$-subnormal”, Sci. China. Math., 62 (2019), 1355–1372 | DOI | MR | Zbl
[20] Abd El-Rahman Heliel, M. Al-Shomrani, A. Ballester-Bolinches, “On the $\sigma$-length of maximal subgroups of finite $\sigma$-soluble groups”, Mathematics, 8:12 (2020), 2165 | MR
[21] A. Ballester-Bolinches, S. F. Kamornikov, M. C. Pedraza-Aguilera, V. Perez-Calabuig, “On $\sigma$-subnormality criteria in finite $\sigma$-soluble groups”, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 114 (2020), 94 | MR | Zbl
[22] S. F. Kamornikov, V. N. Tyutyanov, “O $\sigma$-subnormalnykh podgruppakh konechnykh grupp”, Sib. matem. zhurn., 61:2 (2020), 337–343 | DOI | Zbl
[23] X. Yi, S. F. Kamornikov, “Finite groups with $\sigma$-subnormal Schmidt subgroups”, J. Algebra, 560:15 (2020), 181–191 | MR | Zbl
[24] S. F. Kamornikov, V. N. Tyutyanov, “On $\sigma$-subnormal subgroups of finite $3'$-groups”, Ukrainian Math. J., 72:6 (2020), 935–941 | DOI | MR | Zbl
[25] M. M. Al-Shomrani, A. A. Heliel, A. Ballester-Bolinches, “On $\sigma$-subnormal closure”, Comm. Algebra, 48:8 (2020), 3624–3627 | DOI | MR | Zbl
[26] A-Ming Liu, W. Guo, I. N. Safonova, A. N. Skiba, “$G$-covering subgroup systems for some classes of $\sigma$-soluble groups”, J. Algebra, 585 (2021), 280–293 | DOI | MR | Zbl
[27] A. E. Spencer, “Maximal nonnormal chains in finite groups”, Pacific J. Math., 27 (1968), 167–173 | DOI | MR | Zbl
[28] R. Schmid, “Endliche Gruppen mit vielen modularen Untergruppen”, Abhan. Math. Sem. Univ. Hamburg., 34 (1969), 115–125 | DOI | MR | Zbl
[29] J. Lu, W. Meng, “Finite groups with non-subnormal subgroups”, Comm. Algebra, 45:5 (2017), 2043–2046 | DOI | MR | Zbl
[30] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer, Heidelberg, 2015 | MR | Zbl
[31] K. Doerk, T. Hawkes, Finite Soluble Group, Walter de Gruyter, Berlin, 1992 | MR
[32] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967 | MR | Zbl