Rogosinsky--Bernstein Polynomial Method of Summation of Trigonometric Fourier Series
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 592-605.

Voir la notice de l'article provenant de la source Math-Net.Ru

General Rogosinsky–Bernstein linear polynomial means $R_n(f)$ of Fourier series are introduced and three convergence criteria as $n\to\infty$ are obtained: for convergence in the space $C$ of continuous periodic functions and for convergence almost everywhere with two guaranteed sets (Lebesgue points and $d$-points). For smooth functions, the rate of convergence in norm of $R_n(f)$, as well as of their interpolation analogues, is also studied. For approximation of functions in $C^r$, the asymptotics is found along with the rate of decrease of the remainder term.
Keywords: series and Fourier transforms, Hardy's inequality, Riesz means, modulus of smoothness, linearized modulus of smoothness, Jackson's theorem, conjugate function, entire functions of exponential type, comparison principle, Marcinkiewicz's inequality and discretization.
Mots-clés : Lebesgue points ($l$-points) and $d$-points, Vallée-Poussin polynomial
@article{MZM_2022_111_4_a10,
     author = {R. M. Trigub},
     title = {Rogosinsky--Bernstein {Polynomial} {Method} of {Summation} of {Trigonometric} {Fourier} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {592--605},
     publisher = {mathdoc},
     volume = {111},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a10/}
}
TY  - JOUR
AU  - R. M. Trigub
TI  - Rogosinsky--Bernstein Polynomial Method of Summation of Trigonometric Fourier Series
JO  - Matematičeskie zametki
PY  - 2022
SP  - 592
EP  - 605
VL  - 111
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a10/
LA  - ru
ID  - MZM_2022_111_4_a10
ER  - 
%0 Journal Article
%A R. M. Trigub
%T Rogosinsky--Bernstein Polynomial Method of Summation of Trigonometric Fourier Series
%J Matematičeskie zametki
%D 2022
%P 592-605
%V 111
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a10/
%G ru
%F MZM_2022_111_4_a10
R. M. Trigub. Rogosinsky--Bernstein Polynomial Method of Summation of Trigonometric Fourier Series. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 592-605. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a10/

[1] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatlit, M., 1960 | MR

[2] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl

[3] R. M. Trigub, “Konstruktivnye kharakteristiki nekotorykh klassov funktsii”, Izv. AN SSSR. Ser. matem., 29:3 (1965), 615–630 | MR | Zbl

[4] G. A. Fomin, “O lineinykh metodakh summirovaniya ryadov Fure, podobnykh metodu Bernshteina–Rogozinskogo”, Izv. AN SSSR. Ser. matem., 31:2 (1967), 335–348 | MR | Zbl

[5] R. Trigub, “Norms of linear functionals, summability of trigonometric Fourier series and Wiener algebras”, Operator Theory and Harmonic Analysis, Springer Proc. in Math. Stat., 357, Springer, Cham, 2020, 549–568 | DOI

[6] R. M. Trigub, E. S. Belinsky, Fourier Analysis and Approximation of Functions, Kluwer Academic Publ., Dordrecht, 2004 | MR | Zbl

[7] V. V. Zhuk, Approksimatsiya periodicheskikh funktsii, Leningrad, 1982

[8] R. M. Trigub, “O raznykh modulyakh gladkosti i $K$-funktsionalakh”, Ukr. matem. zhurn., 72:7 (2020), 971–996 | MR | Zbl

[9] A. Zigmund, Trigonometricheskie ryady, T. I, II, Mir, M., 1965 | MR

[10] F. Dai, A. Primak, V. N. Temlyakov, S. Yu. Tikhonov, “Diskretizatsiya integralnoi normy i blizkie zadachi”, UMN, 74:4 (2019), 3–58 | DOI | MR | Zbl

[11] R. M. Trigub, “Asimptotika priblizheniya nepreryvnykh periodicheskikh funktsii lineinymi srednimi ikh ryadov Fure”, Izv. RAN. Ser. matem., 84:3 (2020), 185–202 | DOI | MR | Zbl

[12] R. M. Trigub, “Summiruemost ryadov Fure pochti vsyudu s ukazaniem mnozhestva skhodimosti”, Matem. zametki, 100:1 (2016), 163–179 | DOI | MR | Zbl