Completely Prime Ideals in Multiplicatively Idempotent Semirings
Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 494-505.

Voir la notice de l'article provenant de la source Math-Net.Ru

Structure properties of multiplicatively idempotent semirings are considered. Basic results concerning completely prime ideals in multiplicatively idempotent semirings are obtained. The main theorem describes the commutative multiplicatively idempotent semirings with zero in which all completely prime ideals are maximal: up to isomorphism, such semirings are exhausted by direct products of a Boolean ring and a generalized Boolean lattice. Examples are given showing that the conditions of commutativity and the presence of zero are essential.
Keywords: semiring, multiplicatively idempotent semiring, completely prime ideal, maximal ideal, commutativity, Boolean ring, generalized Boolean lattice.
@article{MZM_2022_111_4_a1,
     author = {E. M. Vechtomov and A. A. Petrov},
     title = {Completely {Prime} {Ideals} in {Multiplicatively} {Idempotent} {Semirings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {494--505},
     publisher = {mathdoc},
     volume = {111},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a1/}
}
TY  - JOUR
AU  - E. M. Vechtomov
AU  - A. A. Petrov
TI  - Completely Prime Ideals in Multiplicatively Idempotent Semirings
JO  - Matematičeskie zametki
PY  - 2022
SP  - 494
EP  - 505
VL  - 111
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a1/
LA  - ru
ID  - MZM_2022_111_4_a1
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%A A. A. Petrov
%T Completely Prime Ideals in Multiplicatively Idempotent Semirings
%J Matematičeskie zametki
%D 2022
%P 494-505
%V 111
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a1/
%G ru
%F MZM_2022_111_4_a1
E. M. Vechtomov; A. A. Petrov. Completely Prime Ideals in Multiplicatively Idempotent Semirings. Matematičeskie zametki, Tome 111 (2022) no. 4, pp. 494-505. http://geodesic.mathdoc.fr/item/MZM_2022_111_4_a1/

[1] E. M. Vechtomov, A. A. Petrov, “Multiplikativno idempotentnye polukoltsa”, Fundament. i prikl. matem., 18:4 (2013), 41–70 | MR

[2] E. M. Vechtomov, A. A. Petrov, Polukoltsa s idempotentnym umnozheniem, Raduga-PRESS, Kirov, 2015

[3] I. Chaida, H. Länger, F. Švrček, “Multiplicatively idempotent semirings”, Math. Bohem., 140:1 (2015), 35–42 | DOI | MR

[4] J. S. Golan, Semirings and Their Applications, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl

[5] G. Grettser, Obschaya teoriya reshetok, Mir, M., 1982

[6] S. N. Ilin, “O gomologicheskoi klassifikatsii polukolets”, Trudy seminara kafedry algebry i matematicheskoi logiki Kazanskogo (Privolzhskogo) federalnogo universiteta, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 158, VINITI RAN, M., 2018, 3–22 | MR

[7] I. Lambek, Koltsa i moduli, Mir, M., 1971 | MR

[8] V. V. Chermnykh, Funktsionalnye predstavleniya polukolets, Izd-vo VyatGGU, Kirov, 2010