Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_3_a7, author = {P. Musial and V. A. Skvortsov and F. Tulone}, title = {On {Descriptive} {Characterizations} of an {Integral} {Recovering} a {Function} from {Its} $L^r${-Derivative}}, journal = {Matemati\v{c}eskie zametki}, pages = {411--421}, publisher = {mathdoc}, volume = {111}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a7/} }
TY - JOUR AU - P. Musial AU - V. A. Skvortsov AU - F. Tulone TI - On Descriptive Characterizations of an Integral Recovering a Function from Its $L^r$-Derivative JO - Matematičeskie zametki PY - 2022 SP - 411 EP - 421 VL - 111 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a7/ LA - ru ID - MZM_2022_111_3_a7 ER -
%0 Journal Article %A P. Musial %A V. A. Skvortsov %A F. Tulone %T On Descriptive Characterizations of an Integral Recovering a Function from Its $L^r$-Derivative %J Matematičeskie zametki %D 2022 %P 411-421 %V 111 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a7/ %G ru %F MZM_2022_111_3_a7
P. Musial; V. A. Skvortsov; F. Tulone. On Descriptive Characterizations of an Integral Recovering a Function from Its $L^r$-Derivative. Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 411-421. http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a7/
[1] B. S. Thomson, Symmetric Properties of Real Functions, Monogr. Textbooks Pure Appl. Math., 183, Marcel Dekker, New York, 1994 | MR | Zbl
[2] V. A. Skvortsov, F. Tulone, “Kurzweil–Henstock type integral on zero-dimensional group and some of its applications”, Czech. Math. J., 58:4 (2008), 1167–1183 | DOI | MR | Zbl
[3] V. A. Skvortsov, F. Tulone, “Henstock–Kurzweil type integral in Fourier analysis on zero-dimensional group”, Tatra Mt. Math. Publ., 44 (2009), 41–51 | MR | Zbl
[4] V. A. Skvortsov, F. Tulone, “Multidimensional dyadic Kurzweil–Henstock- and Perron-type integrals in the theory of Haar and Walsh series”, J. Math. Anal. Appl., 421:2 (2015), 1502–1518 | DOI | MR | Zbl
[5] V. A. Skvortsov, F. Tulone, “On the coefficients of multiple series with respect to Vilenkin system”, Tatra Mt. Math. Publ., 68 (2017), 81–92 | MR | Zbl
[6] V. A. Skvortsov, F. Tulone, “Multidimensional $P$-adic integrals in some problems of harmonic analysis”, Minimax Theory Appl., 2:1 (2017), 153–174 | MR | Zbl
[7] G. Oniani, F. Tulone, “On the possible values of upper and lower derivatives with respect to differentiation bases of product structure”, Bull. Georgian Natl. Acad. Sci. (N.S.), 12:1 (2018), 12–15 | MR | Zbl
[8] G. Oniani, F. Tulone, “On the Almost Everywhere Convergence of Multiple Fourier–Haar Series”, J. Contemp. Math. Anal., 54:5 (2019), 288–295 | DOI | MR | Zbl
[9] F. Tulone, “Generality of Henstock–Kurzweil type integral on a compact zero-dimensional metric space”, Tatra Mt. Math. Publ., 49 (2011), 81–88 | MR | Zbl
[10] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Grad. Stud. Math., 4, Amer. Math. Soc., Providence, RI, 1994 | DOI | MR | Zbl
[11] A. Boccuto, V. A. Skvortsov, F. Tulone, “A Hake-type theorem for integrals with respect to abstract derivation bases in the Riesz space setting”, Math. Slovaca, 65:6 (2015), 1319–1336 | DOI | MR | Zbl
[12] V. A. Skvortsov, F. Tulone, “Obobschennoe svoistvo Khake dlya integralov khenstokovskogo tipa”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2013, no. 6, 9–13 | MR | Zbl
[13] V. Skvortsov, F. Tulone, “A version of Hake's theorem for Kurzweil–Henstock integral in terms of variational measure”, Georgian Math. J., 28:3 (2021), 471–476 | DOI | MR | Zbl
[14] A. Bokkuto, V. A. Skvortsov, F. Tulone, “Integrirovanie funktsii so znacheniyami v kompleksnom prostranstve Rissa i nekotorye prilozheniya v garmonicheskom analize”, Matem. zametki, 98:1 (2015), 12–26 | DOI | MR
[15] V. A. Skvortsov, F. Tulone, “Integral khenstokovskogo tipa na kompaktnom nul-mernom metricheskom prostranstve i predstavlenie kvazi-mery”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2012, no. 2, 11–17 | MR
[16] B. S. Thomson, Derivates of Interval Functions, Mem. Amer. Math. Soc., 452, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl
[17] B. Bongiorno, L. di Piazza, V. Skvortsov, “A new full descriptive characterization of Denjoy–Perron integral”, Real Anal. Exchange, 20:2 (1996), 656–663 | DOI | MR
[18] T. P. Lukashenko, V. A. Skvortsov, A. P. Solodov, Obobschennye integraly, URSS, M., 2011
[19] V. Ene, Real Functions – Current Topics, Lecture Notes in Math., 1603, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl
[20] S. Schwabik, “Variational Measures and the Kurzweil–Henstock integral”, Math. Slovaca, 59:6 (2009), 731–752 | DOI | MR | Zbl
[21] V. A. Skvortsov, “Variations and variational measures in integration theory and some applications”, J. Math. Sci., 91:5 (1998), 3293–3322 | DOI | MR | Zbl
[22] A. P. Calderon, A. Zygmund, “Local properties of solutions of elliptic partial differential equations”, Studia Math., 20 (1961), 171–225 | DOI | MR | Zbl
[23] L. Gordon, “Perron's integral for derivatives in $L^{r}$”, Studia Math., 28 (1967), 295–316 | DOI | MR | Zbl
[24] P. Musial, Y. Sagher, “The $L^r$ Henstock–Kurzweil integral”, Studia Math., 160:1 (2004), 53–81 | DOI | MR | Zbl
[25] P. Musial, V. Skvortsov, F. Tulone, “The $HK_r$-integral is not contained in the $P_r$-integral”, Proc. Amer. Math. Soc., 2022 (to appear)
[26] P. Musial, F. Tulone, “Integration by parts for the $L^r$ Henstock–Kurzweil integral”, Electron. J. Differential Equations, 2015:44 (2015), 1–7 | MR
[27] P. Musial, F. Tulone, “Dual of the Class of $HK_r$-Integrable Functions”, Minimax Theory Appl., 4:1 (2019), 151–160 | MR | Zbl
[28] P. Musial, F. Tulone, “The $L^r$-Variational Integral”, Mediterr. J. Math., 2022 (to appear)
[29] V. Skvortsov, Yu. Zherebyov, “On Classes of Functions Generating Absolutely Continuous Variational Measures”, Real Anal. Exchange, 30:1 (2005), 361–372 | DOI | MR | Zbl