Enumeration of Matchings in Complete $q$-ary Trees
Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 393-402
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the asymptotic behavior of the parameters $m(T_{q,n})$ and $im(T_{q,n})$, that equal the number of matchings and independent matchings in a complete $q$-ary tree $T_{q,n}$ of height $n$. We show that, for any $q\ge 2$, there exists a $b_q>1$ such that, as $n\to+\infty$, the following asymptotic equality holds:
$$
m(T_{q,n})\sim\biggl(\frac{1+\sqrt{1+4\cdot q}}2\,\biggr)^{-1/(q-1)}\cdot(b_q)^{q^n}.
$$
We also show that, for any $q\in \{1,2,3\}$, there exist numbers $a'_q$ and $b'_q>1$ such that $im(T_{q,n})\sim a'_q\cdot (b'_q)^{q^{n}}$ as $n\to+\infty$, and also, for any sufficiently large $q$, there exist numbers $a^{1}_q\ne a^{2}_q$ and $b'_q>1$ such that, as $n\to+\infty$, the following asymptotic equalities hold:
\begin{gather*} im(T_{q,3n})\sim a^{1}_q\cdot (b'_q)^{q^{3n}}, \\ im(T_{q,3n+1})\sim a^{2}_q\cdot (b'_q)^{q^{3n+1}},\qquad im(T_{q,3n+2})\sim a^{1}_q\cdot (b'_q)^{q^{3n+2}}.
\end{gather*}
Keywords:
limit theorem, matching, independent matching, complete $q$-ary tree.
@article{MZM_2022_111_3_a5,
author = {N. A. Kuz'min and D. S. Malyshev},
title = {Enumeration of {Matchings} in {Complete} $q$-ary {Trees}},
journal = {Matemati\v{c}eskie zametki},
pages = {393--402},
publisher = {mathdoc},
volume = {111},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a5/}
}
N. A. Kuz'min; D. S. Malyshev. Enumeration of Matchings in Complete $q$-ary Trees. Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 393-402. http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a5/