Weighted Integrability of Multiple Multiplicative Fourier Transforms
Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 365-374

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the weighted integrability of multiple multiplicative Fourier transforms of Bernstein–Szasz type involving integral moduli of continuity and of Zygmund type with an additional boundedness condition for $s$ fluctuations are given in the paper. The sharpness of Bernstein–Szasz type tests is proved under certain restrictions.
Mots-clés : multiplicative Fourier transform
Keywords: weighted integrability, function with bounded $s$-fluctuation, Lipschitz classes.
@article{MZM_2022_111_3_a3,
     author = {S. S. Volosivets and B. I. Golubov},
     title = {Weighted {Integrability} of {Multiple} {Multiplicative} {Fourier} {Transforms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {365--374},
     publisher = {mathdoc},
     volume = {111},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a3/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - B. I. Golubov
TI  - Weighted Integrability of Multiple Multiplicative Fourier Transforms
JO  - Matematičeskie zametki
PY  - 2022
SP  - 365
EP  - 374
VL  - 111
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a3/
LA  - ru
ID  - MZM_2022_111_3_a3
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A B. I. Golubov
%T Weighted Integrability of Multiple Multiplicative Fourier Transforms
%J Matematičeskie zametki
%D 2022
%P 365-374
%V 111
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a3/
%G ru
%F MZM_2022_111_3_a3
S. S. Volosivets; B. I. Golubov. Weighted Integrability of Multiple Multiplicative Fourier Transforms. Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 365-374. http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a3/