Weighted Integrability of Multiple Multiplicative Fourier Transforms
Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 365-374.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the weighted integrability of multiple multiplicative Fourier transforms of Bernstein–Szasz type involving integral moduli of continuity and of Zygmund type with an additional boundedness condition for $s$ fluctuations are given in the paper. The sharpness of Bernstein–Szasz type tests is proved under certain restrictions.
Mots-clés : multiplicative Fourier transform
Keywords: weighted integrability, function with bounded $s$-fluctuation, Lipschitz classes.
@article{MZM_2022_111_3_a3,
     author = {S. S. Volosivets and B. I. Golubov},
     title = {Weighted {Integrability} of {Multiple} {Multiplicative} {Fourier} {Transforms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {365--374},
     publisher = {mathdoc},
     volume = {111},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a3/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - B. I. Golubov
TI  - Weighted Integrability of Multiple Multiplicative Fourier Transforms
JO  - Matematičeskie zametki
PY  - 2022
SP  - 365
EP  - 374
VL  - 111
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a3/
LA  - ru
ID  - MZM_2022_111_3_a3
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A B. I. Golubov
%T Weighted Integrability of Multiple Multiplicative Fourier Transforms
%J Matematičeskie zametki
%D 2022
%P 365-374
%V 111
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a3/
%G ru
%F MZM_2022_111_3_a3
S. S. Volosivets; B. I. Golubov. Weighted Integrability of Multiple Multiplicative Fourier Transforms. Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 365-374. http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a3/

[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[2] M. H. Taibleson, Fourier Analysis on Local Fields, Princeton Univ. Press, Princeton, NJ, 1975 | MR | Zbl

[3] A. Zigmund, Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR | Zbl

[4] L. Gogoladze, R. Meskhia, “On the absolute convergence of trigonometric Fourier series”, Proc. A. Razmadze Math. Inst., 141 (2006), 29–40 | MR | Zbl

[5] F. Móricz,, “Sufficient conditions for the Lebesgue integrability of Fourier transforms”, Anal. Math., 36:2 (2010), 121–129 | DOI | MR | Zbl

[6] S. S. Platonov, “O preobrazovanii Fure–Uolsha funktsii iz dvoichnykh klassov Dini–Lipshitsa na poluosi”, Matem. zametki, 108:2 (2020), 236–251 | DOI | MR | Zbl

[7] B. I. Golubov, S. S. Volosivets, “On the integrability and uniform convergence of multiplicative Fourier transforms”, Georgian Math. J., 16:3 (2009), 533–546 | DOI | MR | Zbl

[8] B. I. Golubov, S. S. Volosivets, “Obobschennaya vesovaya integriruemost multiplikativnykh preobrazovanii Fure”, Trudy MFTI, 3:1 (2011), 49–56

[9] B. I. Golubov, S. S. Volosivets, “Weighted integrability of $p$-adic Fourier transform”, $p$-Adic Numbers Ultrametric Anal. Appl., 12:3 (2020), 203–209 | DOI | MR | Zbl

[10] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR | Zbl

[11] S. S. Volosivets, “Teoremy vlozheniya tipa P. L. Ulyanova dlya funktsii, opredelennykh na lokalno kompaktnykh nulmernykh gruppakh”, Sib. matem. zhurn., 62:1 (2021), 42–54 | DOI | Zbl