Weighted Integrability of Multiple Multiplicative Fourier Transforms
Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 365-374
Voir la notice de l'article provenant de la source Math-Net.Ru
Sufficient conditions for the weighted integrability of multiple multiplicative Fourier transforms of Bernstein–Szasz type involving integral moduli of continuity and of Zygmund type with an additional boundedness condition for $s$ fluctuations are given in the paper. The sharpness of Bernstein–Szasz type tests is proved under certain restrictions.
Mots-clés :
multiplicative Fourier transform
Keywords: weighted integrability, function with bounded $s$-fluctuation, Lipschitz classes.
Keywords: weighted integrability, function with bounded $s$-fluctuation, Lipschitz classes.
@article{MZM_2022_111_3_a3,
author = {S. S. Volosivets and B. I. Golubov},
title = {Weighted {Integrability} of {Multiple} {Multiplicative} {Fourier} {Transforms}},
journal = {Matemati\v{c}eskie zametki},
pages = {365--374},
publisher = {mathdoc},
volume = {111},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a3/}
}
TY - JOUR AU - S. S. Volosivets AU - B. I. Golubov TI - Weighted Integrability of Multiple Multiplicative Fourier Transforms JO - Matematičeskie zametki PY - 2022 SP - 365 EP - 374 VL - 111 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a3/ LA - ru ID - MZM_2022_111_3_a3 ER -
S. S. Volosivets; B. I. Golubov. Weighted Integrability of Multiple Multiplicative Fourier Transforms. Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 365-374. http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a3/