Weighted Integrability of Multiple Multiplicative Fourier Transforms
Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 365-374 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions for the weighted integrability of multiple multiplicative Fourier transforms of Bernstein–Szasz type involving integral moduli of continuity and of Zygmund type with an additional boundedness condition for $s$ fluctuations are given in the paper. The sharpness of Bernstein–Szasz type tests is proved under certain restrictions.
Mots-clés : multiplicative Fourier transform
Keywords: weighted integrability, function with bounded $s$-fluctuation, Lipschitz classes.
@article{MZM_2022_111_3_a3,
     author = {S. S. Volosivets and B. I. Golubov},
     title = {Weighted {Integrability} of {Multiple} {Multiplicative} {Fourier} {Transforms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {365--374},
     year = {2022},
     volume = {111},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a3/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - B. I. Golubov
TI  - Weighted Integrability of Multiple Multiplicative Fourier Transforms
JO  - Matematičeskie zametki
PY  - 2022
SP  - 365
EP  - 374
VL  - 111
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a3/
LA  - ru
ID  - MZM_2022_111_3_a3
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A B. I. Golubov
%T Weighted Integrability of Multiple Multiplicative Fourier Transforms
%J Matematičeskie zametki
%D 2022
%P 365-374
%V 111
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a3/
%G ru
%F MZM_2022_111_3_a3
S. S. Volosivets; B. I. Golubov. Weighted Integrability of Multiple Multiplicative Fourier Transforms. Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 365-374. http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a3/

[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[2] M. H. Taibleson, Fourier Analysis on Local Fields, Princeton Univ. Press, Princeton, NJ, 1975 | MR | Zbl

[3] A. Zigmund, Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR | Zbl

[4] L. Gogoladze, R. Meskhia, “On the absolute convergence of trigonometric Fourier series”, Proc. A. Razmadze Math. Inst., 141 (2006), 29–40 | MR | Zbl

[5] F. Móricz,, “Sufficient conditions for the Lebesgue integrability of Fourier transforms”, Anal. Math., 36:2 (2010), 121–129 | DOI | MR | Zbl

[6] S. S. Platonov, “O preobrazovanii Fure–Uolsha funktsii iz dvoichnykh klassov Dini–Lipshitsa na poluosi”, Matem. zametki, 108:2 (2020), 236–251 | DOI | MR | Zbl

[7] B. I. Golubov, S. S. Volosivets, “On the integrability and uniform convergence of multiplicative Fourier transforms”, Georgian Math. J., 16:3 (2009), 533–546 | DOI | MR | Zbl

[8] B. I. Golubov, S. S. Volosivets, “Obobschennaya vesovaya integriruemost multiplikativnykh preobrazovanii Fure”, Trudy MFTI, 3:1 (2011), 49–56

[9] B. I. Golubov, S. S. Volosivets, “Weighted integrability of $p$-adic Fourier transform”, $p$-Adic Numbers Ultrametric Anal. Appl., 12:3 (2020), 203–209 | DOI | MR | Zbl

[10] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR | Zbl

[11] S. S. Volosivets, “Teoremy vlozheniya tipa P. L. Ulyanova dlya funktsii, opredelennykh na lokalno kompaktnykh nulmernykh gruppakh”, Sib. matem. zhurn., 62:1 (2021), 42–54 | DOI | Zbl