Finite Groups with Three Nonconjugate Maximal Formational Subgroups
Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 354-364
Voir la notice de l'article provenant de la source Math-Net.Ru
A constructive description is obtained for the hereditary $Z$-saturated formations $\mathfrak{F}$ of finite solvable groups containing every solvable group possessing three pairwise nonconjugate maximal subgroups belonging to $\mathfrak{F}$. It is proved that a finite group $G$ is supersolvable if it has three pairwise nonconjugate supersolvable maximal subgroups and its commutator subgroup $G'$ is nilpotent.
Keywords:
finite group, maximal subgroup, $Z$-saturated formation, formation with the Belonogov property, formation with the Kegel property
Mots-clés : supersolvable group.
Mots-clés : supersolvable group.
@article{MZM_2022_111_3_a2,
author = {A. F. Vasil'ev and V. I. Murashka and A. K. Furs},
title = {Finite {Groups} with {Three} {Nonconjugate} {Maximal} {Formational} {Subgroups}},
journal = {Matemati\v{c}eskie zametki},
pages = {354--364},
publisher = {mathdoc},
volume = {111},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a2/}
}
TY - JOUR AU - A. F. Vasil'ev AU - V. I. Murashka AU - A. K. Furs TI - Finite Groups with Three Nonconjugate Maximal Formational Subgroups JO - Matematičeskie zametki PY - 2022 SP - 354 EP - 364 VL - 111 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a2/ LA - ru ID - MZM_2022_111_3_a2 ER -
A. F. Vasil'ev; V. I. Murashka; A. K. Furs. Finite Groups with Three Nonconjugate Maximal Formational Subgroups. Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 354-364. http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a2/