On the Uniform Stability of Recovering Sine-Type Functions with Asymptotically Separated Zeros
Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 339-353.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the uniform stability of recovering entire functions of special form from their zeros. To such a form, we can reduce the characteristic determinants of strongly regular differential operators and pencils of the first and the second orders, including differential systems with asymptotically separated eigenvalues whose characteristic numbers lie on a line containing the origin, as well as the nonlocal perturbations of these operators. We prove that the dependence of such functions on the sequences of their zeros is Lipschitz continuous with respect to natural metrics on each ball of a finite radius. Results of this type can be used for studying the uniform stability of inverse spectral problems. In addition, general theorems on the asymptotics of zeros of functions of this class and on their equivalent representation via an infinite product are obtained, which give the corresponding results for many specific operators.
Keywords: sine-type function, strongly regular differential operator, eigenvalues, characteristic determinant, infinite product, uniform stability, Lipschitz stability.
@article{MZM_2022_111_3_a1,
     author = {S. A. Buterin},
     title = {On the {Uniform} {Stability} of {Recovering} {Sine-Type} {Functions} with {Asymptotically} {Separated} {Zeros}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {339--353},
     publisher = {mathdoc},
     volume = {111},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a1/}
}
TY  - JOUR
AU  - S. A. Buterin
TI  - On the Uniform Stability of Recovering Sine-Type Functions with Asymptotically Separated Zeros
JO  - Matematičeskie zametki
PY  - 2022
SP  - 339
EP  - 353
VL  - 111
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a1/
LA  - ru
ID  - MZM_2022_111_3_a1
ER  - 
%0 Journal Article
%A S. A. Buterin
%T On the Uniform Stability of Recovering Sine-Type Functions with Asymptotically Separated Zeros
%J Matematičeskie zametki
%D 2022
%P 339-353
%V 111
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a1/
%G ru
%F MZM_2022_111_3_a1
S. A. Buterin. On the Uniform Stability of Recovering Sine-Type Functions with Asymptotically Separated Zeros. Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 339-353. http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a1/

[1] A. M. Savchuk, A. A. Shkalikov, “Obratnye zadachi dlya operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva. Ravnomernaya ustoichivost”, Funkts. analiz i ego pril., 44:4 (2010), 34–53 | DOI | MR | Zbl

[2] S. Buterin, “Uniform stability of the inverse spectral problem for a convolution integro-differential operator”, Appl. Math. Comput., 390 (2021), 125592 | MR | Zbl

[3] S. Buterin, “Uniform full stability of recovering convolutional perturbation of the Sturm–Liouville operator from the spectrum”, J. Differential Equations, 282 (2021), 67–103 | DOI | MR | Zbl

[4] R. O. Hryniv, Y. V. Mykytyuk, “Transformation operators for Sturm–Liouville operators with singular potentials”, Math. Phys. Anal. Geom., 7:2 (2004), 119–149 | DOI | MR | Zbl

[5] B. Ya. Levin, Yu. I. Lyubarskii, “Interpolyatsiya tselymi funktsiyami spetsialnykh klassov i svyazannye s neyu razlozheniya v ryady eksponent”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 657–702 | MR | Zbl

[6] R. O. Hryniv, “Analyticity and uniform stability in the inverse singular Sturm -Liouville spectral problem”, Inverse Problems, 27:6 (2011), 065011 | DOI | MR | Zbl

[7] R. O. Hryniv, “Analyticity and uniform stability in the inverse spectral problem for Dirac operators”, J. Math. Phys., 52 (2011), 063513 | DOI | MR | Zbl

[8] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[9] N. P. Bondarenko, “Direct and inverse problems for the matrix Sturm–Liouville operator with general self-adjoint boundary conditions”, Math. Notes, 109:3 (2021), 358–378 | DOI | MR | Zbl

[10] A. A. Shkalikov, “Regulyarnye spektralnye zadachi giperbolicheskogo tipa dlya sistemy obyknovennykh differentsialnykh uravnenii pervogo poryadka”, Matem. zametki, 110:5 (2021), 796–800 | DOI | Zbl

[11] B. Ya. Levin, “O bazisakh iz pokazatelnykh funktsii v $L^2$”, Zapiski matem. otd. fiz.-matem. fak-ta Kharkovskogo un-ta i Kharkovskogo matem. ob-va, 27:4 (1961), 39–48

[12] V. D. Golovin, “O biortogonalnykh razlozheniyakh v $L^2$ po lineinym kombinatsiyam pokazatelnykh funktsii”, Zapiski matem. otd. fiz.-matem. fak-ta Kharkovskogo un-ta i Kharkovskogo matem. ob-va, 30:4 (1964), 18–29

[13] B. Ya. Levin, Lectures on Entire Functions, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[14] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova Dumka, Kiev, 1977 | MR

[15] V. A. Yurko, “Obratnaya zadacha dlya integralnykh operatorov”, Matem. zametki, 37:5 (1985), 690–701 | MR | Zbl

[16] S. A. Buterin, “Obratnaya spektralnaya zadacha vosstanovleniya operatora svertki, vozmuschennogo odnomernym operatorom”, Matem. zametki, 80:5 (2006), 668–682 | DOI | MR | Zbl

[17] S. A. Buterin, “On an inverse spectral problem for a convolution integro-differential operator”, Results Math., 50:3-4 (2007), 173–181 | DOI | MR

[18] N. Bondarenko, S. Buterin, “On recovering the Dirac operator with an integral delay from the spectrum”, Results Math., 71:3-4 (2017), 1521–1529 | DOI | MR | Zbl

[19] N. Bondarenko, “A 2-edge partial inverse problem for the Sturm–Liouville operators with singular potentials on a star-shaped graph”, Tamkang J. Math., 49:1 (2018), 49–66 | DOI | MR | Zbl

[20] S. A. Buterin, M. A. Malyugina, C.-T. Shieh, “An inverse spectral problem for second-order functional-differential pencils with two delays”, Appl. Math. Comput., 411 (2021), 126475 | MR | Zbl

[21] I. I. Privalov, Vvedenie v teoriyu funktsii kompleksnogo peremennogo, Nauka, M., 1984 | MR