Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_3_a1, author = {S. A. Buterin}, title = {On the {Uniform} {Stability} of {Recovering} {Sine-Type} {Functions} with {Asymptotically} {Separated} {Zeros}}, journal = {Matemati\v{c}eskie zametki}, pages = {339--353}, publisher = {mathdoc}, volume = {111}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a1/} }
TY - JOUR AU - S. A. Buterin TI - On the Uniform Stability of Recovering Sine-Type Functions with Asymptotically Separated Zeros JO - Matematičeskie zametki PY - 2022 SP - 339 EP - 353 VL - 111 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a1/ LA - ru ID - MZM_2022_111_3_a1 ER -
S. A. Buterin. On the Uniform Stability of Recovering Sine-Type Functions with Asymptotically Separated Zeros. Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 339-353. http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a1/
[1] A. M. Savchuk, A. A. Shkalikov, “Obratnye zadachi dlya operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva. Ravnomernaya ustoichivost”, Funkts. analiz i ego pril., 44:4 (2010), 34–53 | DOI | MR | Zbl
[2] S. Buterin, “Uniform stability of the inverse spectral problem for a convolution integro-differential operator”, Appl. Math. Comput., 390 (2021), 125592 | MR | Zbl
[3] S. Buterin, “Uniform full stability of recovering convolutional perturbation of the Sturm–Liouville operator from the spectrum”, J. Differential Equations, 282 (2021), 67–103 | DOI | MR | Zbl
[4] R. O. Hryniv, Y. V. Mykytyuk, “Transformation operators for Sturm–Liouville operators with singular potentials”, Math. Phys. Anal. Geom., 7:2 (2004), 119–149 | DOI | MR | Zbl
[5] B. Ya. Levin, Yu. I. Lyubarskii, “Interpolyatsiya tselymi funktsiyami spetsialnykh klassov i svyazannye s neyu razlozheniya v ryady eksponent”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 657–702 | MR | Zbl
[6] R. O. Hryniv, “Analyticity and uniform stability in the inverse singular Sturm -Liouville spectral problem”, Inverse Problems, 27:6 (2011), 065011 | DOI | MR | Zbl
[7] R. O. Hryniv, “Analyticity and uniform stability in the inverse spectral problem for Dirac operators”, J. Math. Phys., 52 (2011), 063513 | DOI | MR | Zbl
[8] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl
[9] N. P. Bondarenko, “Direct and inverse problems for the matrix Sturm–Liouville operator with general self-adjoint boundary conditions”, Math. Notes, 109:3 (2021), 358–378 | DOI | MR | Zbl
[10] A. A. Shkalikov, “Regulyarnye spektralnye zadachi giperbolicheskogo tipa dlya sistemy obyknovennykh differentsialnykh uravnenii pervogo poryadka”, Matem. zametki, 110:5 (2021), 796–800 | DOI | Zbl
[11] B. Ya. Levin, “O bazisakh iz pokazatelnykh funktsii v $L^2$”, Zapiski matem. otd. fiz.-matem. fak-ta Kharkovskogo un-ta i Kharkovskogo matem. ob-va, 27:4 (1961), 39–48
[12] V. D. Golovin, “O biortogonalnykh razlozheniyakh v $L^2$ po lineinym kombinatsiyam pokazatelnykh funktsii”, Zapiski matem. otd. fiz.-matem. fak-ta Kharkovskogo un-ta i Kharkovskogo matem. ob-va, 30:4 (1964), 18–29
[13] B. Ya. Levin, Lectures on Entire Functions, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl
[14] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova Dumka, Kiev, 1977 | MR
[15] V. A. Yurko, “Obratnaya zadacha dlya integralnykh operatorov”, Matem. zametki, 37:5 (1985), 690–701 | MR | Zbl
[16] S. A. Buterin, “Obratnaya spektralnaya zadacha vosstanovleniya operatora svertki, vozmuschennogo odnomernym operatorom”, Matem. zametki, 80:5 (2006), 668–682 | DOI | MR | Zbl
[17] S. A. Buterin, “On an inverse spectral problem for a convolution integro-differential operator”, Results Math., 50:3-4 (2007), 173–181 | DOI | MR
[18] N. Bondarenko, S. Buterin, “On recovering the Dirac operator with an integral delay from the spectrum”, Results Math., 71:3-4 (2017), 1521–1529 | DOI | MR | Zbl
[19] N. Bondarenko, “A 2-edge partial inverse problem for the Sturm–Liouville operators with singular potentials on a star-shaped graph”, Tamkang J. Math., 49:1 (2018), 49–66 | DOI | MR | Zbl
[20] S. A. Buterin, M. A. Malyugina, C.-T. Shieh, “An inverse spectral problem for second-order functional-differential pencils with two delays”, Appl. Math. Comput., 411 (2021), 126475 | MR | Zbl
[21] I. I. Privalov, Vvedenie v teoriyu funktsii kompleksnogo peremennogo, Nauka, M., 1984 | MR