On the Semiring of Skew Polynomials over a Bezout Semiring
Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 323-338.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study the semiring of skew polynomials over a Rickart Bezout semiring. Namely, let every left annihilator ideal of a semiring $S$ be an ideal. Then the semiring of skew polynomials $R=S[x,\varphi]$ is a semiring without nilpotent elements, and every its finitely generated left monic ideal is principal if and only if $S$ is a left Rickart left Bezout semiring, $\varphi$ is a rigid endomorphism, and $\varphi(d)$ is invertible for any nonzerodivisor $d$. We also obtain a characterization of the semiring $R$ in terms of Pierce stalks of the semiring $S$. The structure of left monic ideals of the semiring of skew polynomials over a left Rickart left Bezout semiring is clarified.
Keywords: semiring of skew polynomials, Bezout semiring, Rickart semiring, monic ideal, Pierce stalk of a semiring.
@article{MZM_2022_111_3_a0,
     author = {M. V. Babenko and V. V. Chermnykh},
     title = {On the {Semiring} of {Skew} {Polynomials} over a {Bezout} {Semiring}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--338},
     publisher = {mathdoc},
     volume = {111},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a0/}
}
TY  - JOUR
AU  - M. V. Babenko
AU  - V. V. Chermnykh
TI  - On the Semiring of Skew Polynomials over a Bezout Semiring
JO  - Matematičeskie zametki
PY  - 2022
SP  - 323
EP  - 338
VL  - 111
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a0/
LA  - ru
ID  - MZM_2022_111_3_a0
ER  - 
%0 Journal Article
%A M. V. Babenko
%A V. V. Chermnykh
%T On the Semiring of Skew Polynomials over a Bezout Semiring
%J Matematičeskie zametki
%D 2022
%P 323-338
%V 111
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a0/
%G ru
%F MZM_2022_111_3_a0
M. V. Babenko; V. V. Chermnykh. On the Semiring of Skew Polynomials over a Bezout Semiring. Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 323-338. http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a0/

[1] L. Dale, “Monic and monic free ideals in polynomial semirings”, Proc. Amer. Math. Soc., 56 (1976), 45–50 | DOI | MR | Zbl

[2] A. A. Tuganbaev, “Koltsa Bezu, mnogochleny i distributivnost”, Matem. zametki, 70:2 (2001), 270–288 | DOI | MR | Zbl

[3] R. S. Pierce, Modules over commutative regular rings, Mem. Amer. Math. Soc., 70, Amer. Math. Soc., Providence, RI, 1967 | MR | Zbl

[4] W. D. Burgess, W. Stephenson, “Pierce sheaves of non-commutative rings”, Comm. Algebra, 39 (1976), 512–526 | DOI | MR

[5] W. D. Burgess, W. Stephenson, “Rings all of whose Pierce stalks are local”, Canad. Math. Bull., 22:2 (1979), 159–164 | DOI | MR | Zbl

[6] K. I. Beidar, A. V. Mikhalev, C. Salavova, “Generalized identities and semiprime rings with involution”, Math. Z., 178 (1981), 37–62 | DOI | MR | Zbl

[7] V. V. Chermnykh, “Puchkovye predstavleniya polukolets”, UMN, 48:5 (293) (1993), 185–186 | MR | Zbl

[8] R. V. Markov, V. V. Chermnykh, “O pirsovskikh sloyakh polukolets”, Fundament. i prikl. matem., 19:2 (2014), 171–186 | MR

[9] R. V. Markov, V. V. Chermnykh, “Polukoltsa, blizkie k regulyarnym, i ikh pirsovskie sloi”, Tr. IMM UrO RAN, 21, no. 3, 2015, 213–221 | MR

[10] V. V. Chermnykh, “Funktsionalnye predstavleniya polukolets”, Fundament. i prikl. matem., 17:3 (2012), 111–227 | Zbl

[11] L. Dale, “The structure of monic ideals in a noncommutative polynomial semirings”, Acta Math. Acad. Sci. Hungar., 39:1-3 (1982), 163–168 | DOI | MR | Zbl

[12] R. V. Markov, V. V. Chermnykh, “Pirsovskie tsepi polukolets”, Vestn. Syktyvkarskogo un-ta, 16 (2012), 88–103 | Zbl

[13] D. A. Maslyaev, V. V. Chermnykh, “Polukoltsa kosykh mnogochlenov Lorana”, Sib. elektron. matem. izv., 17 (2020), 521–533 | DOI | MR | Zbl

[14] A. A. Tuganbaev, Teoriya kolets. Arifmeticheskie koltsa i moduli, MTsNMO, M., 2009

[15] E. M. Vechtomov, “O bulevykh koltsakh”, Matem. zametki, 39:2 (1986), 182–185 | MR | Zbl