On the Semiring of Skew Polynomials over a Bezout Semiring
Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 323-338

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study the semiring of skew polynomials over a Rickart Bezout semiring. Namely, let every left annihilator ideal of a semiring $S$ be an ideal. Then the semiring of skew polynomials $R=S[x,\varphi]$ is a semiring without nilpotent elements, and every its finitely generated left monic ideal is principal if and only if $S$ is a left Rickart left Bezout semiring, $\varphi$ is a rigid endomorphism, and $\varphi(d)$ is invertible for any nonzerodivisor $d$. We also obtain a characterization of the semiring $R$ in terms of Pierce stalks of the semiring $S$. The structure of left monic ideals of the semiring of skew polynomials over a left Rickart left Bezout semiring is clarified.
Keywords: semiring of skew polynomials, Bezout semiring, Rickart semiring, monic ideal, Pierce stalk of a semiring.
@article{MZM_2022_111_3_a0,
     author = {M. V. Babenko and V. V. Chermnykh},
     title = {On the {Semiring} of {Skew} {Polynomials} over a {Bezout} {Semiring}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--338},
     publisher = {mathdoc},
     volume = {111},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a0/}
}
TY  - JOUR
AU  - M. V. Babenko
AU  - V. V. Chermnykh
TI  - On the Semiring of Skew Polynomials over a Bezout Semiring
JO  - Matematičeskie zametki
PY  - 2022
SP  - 323
EP  - 338
VL  - 111
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a0/
LA  - ru
ID  - MZM_2022_111_3_a0
ER  - 
%0 Journal Article
%A M. V. Babenko
%A V. V. Chermnykh
%T On the Semiring of Skew Polynomials over a Bezout Semiring
%J Matematičeskie zametki
%D 2022
%P 323-338
%V 111
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a0/
%G ru
%F MZM_2022_111_3_a0
M. V. Babenko; V. V. Chermnykh. On the Semiring of Skew Polynomials over a Bezout Semiring. Matematičeskie zametki, Tome 111 (2022) no. 3, pp. 323-338. http://geodesic.mathdoc.fr/item/MZM_2022_111_3_a0/