Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_2_a7, author = {N. A. Kuz'min and D. S. Malyshev}, title = {A {New} {Proof} of a {Result} {Concerning} a {Complete} {Description} of $ (n, n + 2) ${-Graphs} with {Maximum} {Value} of the {Hosoya} {Index}}, journal = {Matemati\v{c}eskie zametki}, pages = {258--276}, publisher = {mathdoc}, volume = {111}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a7/} }
TY - JOUR AU - N. A. Kuz'min AU - D. S. Malyshev TI - A New Proof of a Result Concerning a Complete Description of $ (n, n + 2) $-Graphs with Maximum Value of the Hosoya Index JO - Matematičeskie zametki PY - 2022 SP - 258 EP - 276 VL - 111 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a7/ LA - ru ID - MZM_2022_111_2_a7 ER -
%0 Journal Article %A N. A. Kuz'min %A D. S. Malyshev %T A New Proof of a Result Concerning a Complete Description of $ (n, n + 2) $-Graphs with Maximum Value of the Hosoya Index %J Matematičeskie zametki %D 2022 %P 258-276 %V 111 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a7/ %G ru %F MZM_2022_111_2_a7
N. A. Kuz'min; D. S. Malyshev. A New Proof of a Result Concerning a Complete Description of $ (n, n + 2) $-Graphs with Maximum Value of the Hosoya Index. Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 258-276. http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a7/
[1] H. Hosoya, “Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbon”, Bull. Chem. Soc. Japan, 44 (1971), 2332–2339 | DOI
[2] H. Hosoya, “The topological index $Z$ before and after 1971”, Internet Electron. J. Mol. Des., 1 (2002), 428–442 | DOI
[3] H. Hosoya, “Important mathematical structures of the topological index $Z$ for tree graphs”, J. Chem. Inform. Model., 47 (2007), 744–750 | DOI
[4] H. Hosoya, “Mathematical meaning and importance of the topological index $Z$”, Croatica Chemica Acta, 80 (2007), 239–249
[5] I. Gutman, “Acyclic systems with extremal Hückel $\pi$-electron energy”, Theoret. Chem. Accounts, 45 (1977), 79–87 | DOI
[6] J. Ou, “On extremal unicyclic molecular graphs with maximal Hosoya index”, Discrete Appl. Math., 157 (2009), 391–397 | DOI | Zbl
[7] H. Deng, “The largest Hosoya index of $(n,n+1)$-graphs”, Comput. Math. Appl., 56 (2008), 2499–2506 | DOI | Zbl
[8] Y. Liu, W. Zhuang, Z. Liang, “Largest Hosoya index and smallest Merrifeld–Simmons index in tricyclic graphs”, MATCH Commun. Math. Comput. Chem., 73 (2015), 195–224 | Zbl
[9] A. M. Magomedov, T. A. Magomedov, S. A. Lavrenchenko, “Vzaimno-rekurrentnye formuly dlya perechisleniya razbienii pryamougolnika”, PDM, 2019, no. 46, 108–121 | DOI | Zbl