$G$-Covering Subgroup Systems for the Class of All $\sigma$-Nilpotent Finite Groups
Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 233-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak F$ be a nonempty class of groups and let $G$ be a finite group. A set $\Sigma$ of subgroups of the group $G$ is called a $G$-covering subgroup system for the class $\mathfrak F$ (or an $\mathfrak F$-covering subgroup system of $G$) if $\Sigma \subseteq \mathfrak F$ always implies that $G \in \mathfrak F$. In this paper, a nontrivial set of subgroups of $G$ is constructed which is a $G$-covering subgroup system for the class $\mathfrak F$ of all $\sigma$-nilpotent groups.
Keywords: finite group, Sylow subgroup, supplement to a subgroup, $G$-covering subgroup system, $\sigma$-nilpotent group.
@article{MZM_2022_111_2_a5,
     author = {X. Yi and S. F. Kamornikov and V. N. Tyutyanov},
     title = {$G${-Covering} {Subgroup} {Systems} for the {Class} of {All} $\sigma${-Nilpotent} {Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {233--240},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a5/}
}
TY  - JOUR
AU  - X. Yi
AU  - S. F. Kamornikov
AU  - V. N. Tyutyanov
TI  - $G$-Covering Subgroup Systems for the Class of All $\sigma$-Nilpotent Finite Groups
JO  - Matematičeskie zametki
PY  - 2022
SP  - 233
EP  - 240
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a5/
LA  - ru
ID  - MZM_2022_111_2_a5
ER  - 
%0 Journal Article
%A X. Yi
%A S. F. Kamornikov
%A V. N. Tyutyanov
%T $G$-Covering Subgroup Systems for the Class of All $\sigma$-Nilpotent Finite Groups
%J Matematičeskie zametki
%D 2022
%P 233-240
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a5/
%G ru
%F MZM_2022_111_2_a5
X. Yi; S. F. Kamornikov; V. N. Tyutyanov. $G$-Covering Subgroup Systems for the Class of All $\sigma$-Nilpotent Finite Groups. Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 233-240. http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a5/

[1] W. Guo, K. P. Shum, A. N. Skiba, “$G$-covering subgroup systems for the classes of supersoluble and nilpotent groups”, Israel J. Math., 138 (2003), 125–138 | DOI | Zbl

[2] M. Bianchi, A. G. B. Mauri, P. Hauck, “On finite groups with nilpotent Sylow normalizers”, Arch. Math., 47 (1986), 193–197 | DOI | Zbl

[3] O. Yu. Shmidt, “Gruppy, vse podgruppy kotorykh spetsialnye”, Matem. sb., 31:3-4 (1924), 366–372 | Zbl

[4] Nereshennye voprosy teorii grupp: Kourovskaya tetrad, In-t matem. SO RAN, Novosibirsk, 2018

[5] S. F. Kamornikov, V. N. Tyutyanov, “O dvukh problemakh iz “Kourovskoi tetradi””, Tr. IMM UrO RAN, 27, no. 1, 2021, 98–102 | DOI

[6] A.-M. Liu, W. Guo, I. N. Safonova, A. N. Skiba, “$G$-covering subgroup systems for some classes of $\sigma$-soluble groups”, J. Algebra, 585 (2021), 280–293 | DOI | Zbl

[7] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992 | MR

[8] A. N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | Zbl

[9] A. N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, J. Algebra, 550 (2020), 69–81 | DOI

[10] R. Guralnick, “Subgroups of prime power index in a simple group”, J. Algebra, 81:2 (1983), 304–311 | DOI | Zbl

[11] H. Wielandt, “Subnormalität in faktorisierten endlichen Gruppen”, J. Algebra, 69:2 (1981), 305–311 | DOI | Zbl

[12] R. Baer, “Engelsche Elemente Noetherscher Gruppen”, Math. Ann., 133 (1957), 256–270 | DOI | Zbl

[13] P. Hall, “Theorems like Sylow's”, Proc. London Math. Soc., 6 (1956), 286–304 | DOI | Zbl

[14] S. F. Kamornikov, M. V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Belorusskaya nauka, Mn., 2003

[15] F. Sun, S. Ii, S. F. Kamornikov, “Kriterii subnormalnosti v konechnoi gruppe: reduktsiya k prosteishim binarnym razbieniyam”, Tr. IMM UrO RAN, 26, no. 3, 2020, 211–218 | DOI