A Note on Generalized Contraction Theorems
Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 211-218

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to estimates of the fixed point of generalized contracting (in the sense of Browder's and Krasnoselskii's definitions) operators $ G $ in a complete metric space $ (X, \rho)$. Upper and lower bounds for the distance $ \rho (x_0, \xi) $ between an arbitrary $ x_0 \in X $ and a fixed point $ \xi $ of the operator $ G $ are obtained. In the case of an “ordinary” $ q $-contraction ($ 0 \le q 1 $), the upper bound obtained in this work yields the inequality $$ \rho (x_0, \xi) \le{(1-q)} ^{-1}{\rho (x_0, G (x_0))} $$ from Banach's theorem, while the lower bound yields the inequality $$ \rho (x_0, \xi) \ge{(1 + q)} ^{-1}{\rho (x_0, G (x_0))}. $$ Also, for a generalized contraction operator, we obtain estimates of the distance $ \rho (x_0, x_i) $ from $ x_0 $ to the $ i $th the iteration $ x_i $ (defined by the recurrence relation $ x_j = G (x_{j-1})$, $ j = 1, \dots, i $). Using the obtained estimates, we prove a fixed-point theorem for an operator satisfying a local generalized contraction condition.
Keywords: fixed point, generalized contraction operator, iterations, metric.
@article{MZM_2022_111_2_a3,
     author = {E. S. Zhukovskiy},
     title = {A {Note} on {Generalized} {Contraction} {Theorems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {211--218},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a3/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
TI  - A Note on Generalized Contraction Theorems
JO  - Matematičeskie zametki
PY  - 2022
SP  - 211
EP  - 218
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a3/
LA  - ru
ID  - MZM_2022_111_2_a3
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%T A Note on Generalized Contraction Theorems
%J Matematičeskie zametki
%D 2022
%P 211-218
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a3/
%G ru
%F MZM_2022_111_2_a3
E. S. Zhukovskiy. A Note on Generalized Contraction Theorems. Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 211-218. http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a3/