A Note on Generalized Contraction Theorems
Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 211-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to estimates of the fixed point of generalized contracting (in the sense of Browder's and Krasnoselskii's definitions) operators $ G $ in a complete metric space $ (X, \rho)$. Upper and lower bounds for the distance $ \rho (x_0, \xi) $ between an arbitrary $ x_0 \in X $ and a fixed point $ \xi $ of the operator $ G $ are obtained. In the case of an “ordinary” $ q $-contraction ($ 0 \le q 1 $), the upper bound obtained in this work yields the inequality $$ \rho (x_0, \xi) \le{(1-q)} ^{-1}{\rho (x_0, G (x_0))} $$ from Banach's theorem, while the lower bound yields the inequality $$ \rho (x_0, \xi) \ge{(1 + q)} ^{-1}{\rho (x_0, G (x_0))}. $$ Also, for a generalized contraction operator, we obtain estimates of the distance $ \rho (x_0, x_i) $ from $ x_0 $ to the $ i $th the iteration $ x_i $ (defined by the recurrence relation $ x_j = G (x_{j-1})$, $ j = 1, \dots, i $). Using the obtained estimates, we prove a fixed-point theorem for an operator satisfying a local generalized contraction condition.
Keywords: fixed point, generalized contraction operator, iterations, metric.
@article{MZM_2022_111_2_a3,
     author = {E. S. Zhukovskiy},
     title = {A {Note} on {Generalized} {Contraction} {Theorems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {211--218},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a3/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
TI  - A Note on Generalized Contraction Theorems
JO  - Matematičeskie zametki
PY  - 2022
SP  - 211
EP  - 218
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a3/
LA  - ru
ID  - MZM_2022_111_2_a3
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%T A Note on Generalized Contraction Theorems
%J Matematičeskie zametki
%D 2022
%P 211-218
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a3/
%G ru
%F MZM_2022_111_2_a3
E. S. Zhukovskiy. A Note on Generalized Contraction Theorems. Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 211-218. http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a3/

[1] S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations integrales”, Fund. Math., 3 (1922), 133–181 | DOI | Zbl

[2] A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, 2003 | MR | Zbl

[3] F. E. Browder, “On the convergence of successive approximations for nonlinear functional equations”, Nederl. Akad. Wetensch. Proc. Ser. A, 71 (1968), 27–35 | DOI | Zbl

[4] M. A. Krasnoselskii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, V. Ya. Stetsenko, Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR | Zbl

[5] A. V. Arutyunov, A. V. Greshnov, “$(q_1,q_2)$-kvazimetricheskie prostranstva. Nakryvayuschie otobrazheniya i tochki sovpadeniya”, Izv. RAN. Ser. matem., 82:2 (2018), 3–32 | DOI | MR | Zbl

[6] I. A. Bakhtin, “Printsip szhatykh otobrazhenii v pochti metricheskikh prostranstvakh”, Funkts. analiz. Ulyanovskii gos. pedg. in-t im. I. N. Ulyanova, 30 (1989), 26–37 | Zbl

[7] D. Panthi, K. Jha, G. Porru, “A fixed point theorem in dislocated quasi-metric space”, Amer. J. Math. Stat., 3:3 (2013), 153–156 | DOI

[8] T. V. Zhukovskaya, V. Merchela, A. I. Shindyapin, “O tochkakh sovpadeniya otobrazhenii v obobschennykh metricheskikh prostranstvakh”, Vestnik rossiiskikh universitetov. Matematika, 25:129 (2020), 18–24 | DOI | Zbl

[9] E. S. Zhukovskii, E. A. Panasenko, “O nepodvizhnykh tochkakh mnogoznachnykh otobrazhenii v prostranstvakh s vektornoznachnoi metrikoi”, Tr. IMM UrO RAN, 24, no. 1, 2018, 93–105 | DOI

[10] J. Jachymski, “Around Browder's fixed point theorem for contractions”, J. Fixed Point Theory Appl., 5:1 (2009), 47–61 | DOI | Zbl

[11] A. I. Perov, “Mnogomernaya versiya printsipa obobschennogo szhatiya M. A. Krasnoselskogo”, Funkts. analiz i ego pril., 44:1 (2010), 83–87 | DOI | MR | Zbl

[12] E. S. Zhukovskii, “Nepodvizhnye tochki szhimayuschikh otobrazhenii $f$-kvazimetricheskikh prostranstv”, Sib. matem. zhurn., 59:6 (2018), 1338–1350 | DOI | Zbl

[13] T. V. Zhukovskaya, E. S. Zhukovskii, “Ob odnom kvazimetricheskom prostranstve”, Vestn. Tambovskogo un-ta. Ser. Estestv. tekhn. nauki, 22:6 (2017), 1285–1292

[14] M. V. Borzova, E. S. Zhukovskii, N. Yu. Chernikova, “Odna otsenka nepodvizhnykh tochek i tochek sovpadeniya otobrazhenii metricheskikh prostranstv”, Vestn. Tambovskogo un-ta. Ser. Estestv. tekhn. nauki, 22:6 (2017), 1255–1260