Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_2_a0, author = {A. Yu. Anikin and V. V. Rykhlov}, title = {Constructive {Semiclassical} {Asymptotics} of {Bound} {States} of {Graphene} in a {Constant} {Magnetic} {Field} with {Small} {Mass}}, journal = {Matemati\v{c}eskie zametki}, pages = {163--187}, publisher = {mathdoc}, volume = {111}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a0/} }
TY - JOUR AU - A. Yu. Anikin AU - V. V. Rykhlov TI - Constructive Semiclassical Asymptotics of Bound States of Graphene in a Constant Magnetic Field with Small Mass JO - Matematičeskie zametki PY - 2022 SP - 163 EP - 187 VL - 111 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a0/ LA - ru ID - MZM_2022_111_2_a0 ER -
%0 Journal Article %A A. Yu. Anikin %A V. V. Rykhlov %T Constructive Semiclassical Asymptotics of Bound States of Graphene in a Constant Magnetic Field with Small Mass %J Matematičeskie zametki %D 2022 %P 163-187 %V 111 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a0/ %G ru %F MZM_2022_111_2_a0
A. Yu. Anikin; V. V. Rykhlov. Constructive Semiclassical Asymptotics of Bound States of Graphene in a Constant Magnetic Field with Small Mass. Matematičeskie zametki, Tome 111 (2022) no. 2, pp. 163-187. http://geodesic.mathdoc.fr/item/MZM_2022_111_2_a0/
[1] M. I. Katsnelson, Graphene. Carbon in Two Dimensions, Cambridge Univ. Press, Cambridge, 2012
[2] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[3] V. F. Lazutkin, KAM Theory and Semiclassical Approximations to Eigenfunctions, Springer-Verlag, Berlin, 1993 | MR
[4] Y. Colin de Verdiére, “Spectre conjoint d'operateurs pseudo-differentiels qui commutent I. Le cas non integrable”, Duke Math. J., 46:1 (1979), 169–182 | DOI | Zbl
[5] A. Yu. Anikin, S. Yu. Dobrokhotov, “Diophantine tori and pragmatic calculation of quasimodes for operators with integrable principal symbol”, Russ. J. Math. Phys, 27:3 (2020), 299–308 | DOI | Zbl
[6] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Ravnomernaya asimptotika v vide funktsii Eiri dlya kvaziklassicheskikh svyazannykh sostoyanii v odnomernykh i radialno-simmetrichnykh zadachakh”, TMF, 201:3 (2019), 382–414 | DOI | MR | Zbl
[7] S. Yu. Dobrokhotov, V. E Nazaikinskii, “Efficient formulas for the Maslov canonical operator near a simple caustic”, Russ. J. Math. Phys., 25 (2018), 545–552 | DOI | Zbl
[8] S. Yu. Slavyanov, Asimptotika reshenii odnomernogo uravneniya Shredingera, Izd-vo LGU, L., 1990
[9] M. V. Berry, C. J. Howls, Integrals With Coalescing Saddles, NIST Digital Library of Mathematical Functions, 2010
[10] M. V. Fedoryuk, Asimptotika: integraly i ryady, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1987 | MR | Zbl
[11] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Lagranzhevy mnogoobraziya i effektivnye formuly dlya korotkovolnovykh asimptotik v okrestnosti tochki vozvrata kaustiki”, Matem. zametki, 108:3 (2020), 334–359 | DOI | MR | Zbl
[12] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR | Zbl
[13] R. G. Littlejohn, Hamilton Theory of Guiding Center Motion, Ph.D. Thesis, Berkeley, CA, 1980
[14] A. I. Neishtadt, “Razdelenie dvizhenii v sistemakh s bystro vraschayuscheisya fazoi”, PMM, 48:2 (1984), 197–204
[15] M. V. Karasev, V. P. Maslov, “Asimptoticheskoe i geometricheskoe kvantovanie”, UMN, 39:6 (1984), 115–173 | MR | Zbl
[16] M. V. Karasev, E. M. Novikova, “Algebras with polynomial commutation relations for a quantum particle in electric and magnetic fields”, Quantum algebras and Poisson geometry in mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 216, Amer. Math. Soc., Providence, RI, 2005, 19–135 | MR | Zbl
[17] W. Scherer, “Quantum Averaging. I. Poincaré von Zeipel is Rayleigh Schrödinger”, J. Phys. A: Math. Gen., 27:24 (1994), 8231 | DOI | Zbl
[18] W. Scherer, “Quantum Averaging. II. Kolmogorov's Algorithm”, J. Phys. A: Math. Gen., 30:8 (1997), 2825 | DOI | Zbl
[19] J. Brüning, S. Yu. Dobrokhotov, K. V. Pankrashkin, “The spectral asymptotics of the two-dimensional Schrödinger operator with a strong magnetic field. I”, Russ. J. Math. Phys., 9:1 (2002), 14–49 | MR | Zbl
[20] J. Brüning, S. Yu. Dobrokhotov, K. V. Pankrashkin, “The spectral asymptotics of the two-dimensional Schrödinger operator with a strong magnetic field. II”, Russ. J. Math. Phys., 9:4 (2002), 400–416 | MR | Zbl
[21] A. Yu. Anikin, J. Brüning, S. Yu. Dobrokhotov, E. Vybornyi, “Averaging and spectral bands for 2-D magnetic Schrödinger operator with the growing and one-dimension periodic potential”, Russ. J. Math. Phys., 26:3 (2019), 265–276 | DOI | Zbl
[22] A. Eckstein, “Unitary reduction for the two-dimensional Schrodinger operator with strong magnetic field”, Math. Nachr., 282:4 (2009), 504–525 | DOI | Zbl
[23] B. Helffer, J. Sjöstrand, “Équation de Schrödinger avec champ magnétique et équation de Harper”, Schrödinger Operators, Lecture Notes in Phys., 345, Springer, Berlin, 1998, 118–198 | DOI
[24] A. Yu. Anikin, S. Yu. Dobrokhotov, A. I. Klevin, B. Tirotstsi, “Skalyarizatsiya statsionarnykh kvaziklassicheskikh zadach dlya sistem uravnenii i prilozhenie k fizike plazmy”, TMF, 193:3 (2017), 409–433 | DOI | Zbl
[25] S. Yu. Dobrokhotov, D. S. Minenkov, M. Rulo, “Printsip Mopertyui–Yakobi dlya gamiltonianov vida $f(x,|p|)$ v nekotorykh dvumernykh statsionarnykh kvaziklassicheskikh zadachakh”, Matem. zametki, 97:1 (2015), 48–57 | DOI | MR | Zbl
[26] M. V. Karasev, E. M. Novikova, “Predstavlenie tochnykh i kvaziklassicheskikh sobstvennykh funktsii cherez kogerentnye sostoyaniya. Atom vodoroda v magnitnom pole”, TMF, 108:3 (1996), 339–387 | DOI | MR | Zbl
[27] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Tom 1. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR