Asymptotics of the Independence Number of a Random Subgraph of the Graph~$G(n,r,$
Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 107-116

Voir la notice de l'article provenant de la source Math-Net.Ru

The probabilistic version of a classical problem of extremal combinatorics is considered. The stability theorem which says that the independence number of a random subgraph of the graph $G(n,r,s)$ remains asymptotically constant when edges are randomly removed is generalized to the case of nonconstant parameters.
Keywords: graph $G(n,r,s)$, independence number, random subgraph, $s$-intersecting set, asymptotics.
@article{MZM_2022_111_1_a9,
     author = {A. M. Raigorodskii and V. S. Karas},
     title = {Asymptotics of the {Independence} {Number} of a {Random} {Subgraph} of the {Graph~}$G(n,r,<s)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {107--116},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a9/}
}
TY  - JOUR
AU  - A. M. Raigorodskii
AU  - V. S. Karas
TI  - Asymptotics of the Independence Number of a Random Subgraph of the Graph~$G(n,r,
JO  - Matematičeskie zametki
PY  - 2022
SP  - 107
EP  - 116
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a9/
LA  - ru
ID  - MZM_2022_111_1_a9
ER  - 
%0 Journal Article
%A A. M. Raigorodskii
%A V. S. Karas
%T Asymptotics of the Independence Number of a Random Subgraph of the Graph~$G(n,r,
%J Matematičeskie zametki
%D 2022
%P 107-116
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a9/
%G ru
%F MZM_2022_111_1_a9
A. M. Raigorodskii; V. S. Karas. Asymptotics of the Independence Number of a Random Subgraph of the Graph~$G(n,r,